Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry Street, Suite 350, San Francisco, CA, 94107, USA.
Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
Eur Radiol. 2023 May;33(5):3435-3443. doi: 10.1007/s00330-023-09483-6. Epub 2023 Mar 15.
To evaluate a deep learning model for automated and interpretable classification of central canal stenosis, neural foraminal stenosis, and facet arthropathy from lumbar spine MRI.
T2-weighted axial MRI studies of the lumbar spine acquired between 2008 and 2019 were retrospectively selected (n = 200) and graded for central canal stenosis, neural foraminal stenosis, and facet arthropathy. Studies were partitioned into patient-level train (n = 150), validation (n = 20), and test (n = 30) splits. V-Net models were first trained to segment the dural sac and the intervertebral disk, and localize facet and foramen using geometric rules. Subsequently, Big Transfer (BiT) models were trained for downstream classification tasks. An interpretable model for central canal stenosis was also trained using a decision tree classifier. Evaluation metrics included linearly weighted Cohen's kappa score for multi-grade classification and area under the receiver operator characteristic curve (AUROC) for binarized classification.
Segmentation of the dural sac and intervertebral disk achieved Dice scores of 0.93 and 0.94. Localization of foramen and facet achieved intersection over union of 0.72 and 0.83. Multi-class grading of central canal stenosis achieved a kappa score of 0.54. The interpretable decision tree classifier had a kappa score of 0.80. Pairwise agreement between readers (R1, R2), (R1, R3), and (R2, R3) was 0.86, 0.80, and 0.74. Binary classification of neural foraminal stenosis and facet arthropathy achieved AUROCs of 0.92 and 0.93.
Deep learning systems can be performant as well as interpretable for automated evaluation of lumbar spine MRI including classification of central canal stenosis, neural foraminal stenosis, and facet arthropathy.
• Interpretable deep-learning systems can be developed for the evaluation of clinical lumbar spine MRI. Multi-grade classification of central canal stenosis with a kappa of 0.80 was comparable to inter-reader agreement scores (0.74, 0.80, 0.86). Binary classification of neural foraminal stenosis and facet arthropathy achieved favorable and accurate AUROCs of 0.92 and 0.93, respectively. • While existing deep-learning systems are opaque, leading to clinical deployment challenges, the proposed system is accurate as well as interpretable, providing valuable information to a radiologist in clinical practice.
评估一种深度学习模型,用于从腰椎 MRI 自动分类中央管狭窄、神经孔狭窄和小关节病。
回顾性选择 2008 年至 2019 年间采集的腰椎 T2 加权轴向 MRI 研究(n=200),并对中央管狭窄、神经孔狭窄和小关节病进行分级。研究分为患者级别的训练集(n=150)、验证集(n=20)和测试集(n=30)。首先使用 V-Net 模型分割硬脑膜囊和椎间盘,并使用几何规则定位小关节和孔。然后,使用 Big Transfer (BiT) 模型进行下游分类任务。还使用决策树分类器训练了用于中央管狭窄的可解释模型。评估指标包括多等级分类的线性加权 Cohen's kappa 评分和二分类的接收器操作特征曲线下面积 (AUROC)。
硬脑膜囊和椎间盘的分割达到了 Dice 评分 0.93 和 0.94。孔和小关节的定位达到了交并比 0.72 和 0.83。中央管狭窄的多等级分级的 kappa 评分为 0.54。可解释的决策树分类器的 kappa 评分为 0.80。读者之间的两两一致性(R1,R2)、(R1,R3)和(R2,R3)分别为 0.86、0.80 和 0.74。神经孔狭窄和小关节病的二分类 AUROC 分别为 0.92 和 0.93。
深度学习系统可以在自动评估腰椎 MRI 方面表现出色且具有可解释性,包括中央管狭窄、神经孔狭窄和小关节病的分类。
可开发用于评估临床腰椎 MRI 的可解释深度学习系统。多等级分类的中央管狭窄的 kappa 评分为 0.80,与读者之间的一致性评分(0.74、0.80、0.86)相当。
神经孔狭窄和小关节病的二进制分类分别达到了良好和准确的 AUROC,分别为 0.92 和 0.93。
虽然现有的深度学习系统不透明,导致临床部署挑战,但所提出的系统准确且具有可解释性,为放射科医生提供了有价值的临床实践信息。