Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, S1 3JD, UK.
Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2RX, UK.
Sci Rep. 2024 Sep 19;14(1):21863. doi: 10.1038/s41598-024-70277-x.
Accurate prediction of blood glucose level (BGL) has proven to be an effective way to help in type 1 diabetes management. The choice of input, along with the fundamental choice of model structure, is an existing challenge in BGL prediction. Investigating the performance of different data-driven time series forecasting approaches with different inputs for BGL prediction is beneficial in advancing BGL prediction performance. Limited work has been made in this regard, which has resulted in different conclusions. This paper performs a comprehensive investigation of different data-driven time series forecasting approaches using different inputs. To do so, BGL prediction is comparatively investigated from two perspectives; the model's approach and the model's input. First, we compare the performance of BGL prediction using different data-driven time series forecasting approaches, including classical time series forecasting, traditional machine learning, and deep neural networks. Secondly, for each prediction approach, univariate input, using BGL data only, is compared to a multivariate input, using data on carbohydrate intake, injected bolus insulin, and physical activity in addition to BGL data. The investigation is performed on two publicly available Ohio datasets. Regression-based and clinical-based metrics along with statistical analyses are performed for evaluation and comparison purposes. The outcomes show that the traditional machine learning model is the fastest model to train and has the best BGL prediction performance especially when using multivariate input. Also, results show that simply adding extra variables does not necessarily improve BGL prediction performance significantly, and data fusion approaches may be required to effectively leverage other variables' information.
准确预测血糖水平(BGL)已被证明是帮助 1 型糖尿病管理的有效方法。输入的选择以及模型结构的基本选择是 BGL 预测中的现有挑战。研究不同输入下不同数据驱动时间序列预测方法的性能对于提高 BGL 预测性能是有益的。在这方面的工作有限,导致了不同的结论。本文全面调查了不同输入下不同数据驱动时间序列预测方法的性能。为此,从模型方法和模型输入两个角度比较了 BGL 预测。首先,我们比较了使用不同数据驱动时间序列预测方法的 BGL 预测性能,包括经典时间序列预测、传统机器学习和深度神经网络。其次,对于每种预测方法,我们将仅使用 BGL 数据的单变量输入与使用碳水化合物摄入、注射推注胰岛素和体力活动以及 BGL 数据的多变量输入进行比较。该研究在两个公开的俄亥俄数据集上进行。回归和临床指标以及统计分析用于评估和比较目的。结果表明,传统的机器学习模型是训练速度最快的模型,尤其是在使用多变量输入时,具有最佳的 BGL 预测性能。此外,结果表明,仅添加额外的变量不一定会显著提高 BGL 预测性能,可能需要数据融合方法来有效利用其他变量的信息。