Suppr超能文献

基于近红外和中红外光谱的体外葡萄糖测量:机器学习与滤波化学计量学的综合基准测试

In Vitro Glucose Measurement from NIR and MIR Spectroscopy: Comprehensive Benchmark of Machine Learning and Filtering Chemometrics.

作者信息

Khadem Heydar, Nemat Hoda, Elliott Jackie, Benaissa Mohammed

机构信息

Department of Electronic and Electrical Engineering, University of Sheffield, UK.

Department of Computer Science, University of Manchester, Manchester, UK.

出版信息

Heliyon. 2024 May 9;10(10):e30981. doi: 10.1016/j.heliyon.2024.e30981. eCollection 2024 May 30.

Abstract

The quantitative analysis of glucose using spectroscopy is a topic of great significance and interest in science and industry. One conundrum in this area is deploying appropriate preprocessing and regression tools. To contribute to addressing this challenge, in this study, we conducted a comprehensive and novel comparative analysis of various machine learning and preprocessing filtering techniques applied to near-infrared, mid-infrared, and a combination of near-infrared and mid-infrared spectroscopy for glucose assay. Our objective was to evaluate the effectiveness of these techniques in accurately predicting glucose levels and to determine which approach was most optimal. Our investigation involved the acquisition of spectral data from samples of glucose solutions using the three aforementioned spectroscopy techniques. The data was subjected to several preprocessing filtering methods, including convolutional moving average, Savitzky-Golay, multiplicative scatter correction, and normalisation. We then applied representative machine learning algorithms from three categories: linear modelling, traditional nonlinear modelling, and artificial neural networks. The evaluation results revealed that linear models exhibited higher predictive accuracy than nonlinear models, whereas artificial neural network models demonstrated comparable performance. Additionally, the comparative analysis of various filtering methods demonstrated that the convolutional moving average and Savitzky-Golay filters yielded the most precise outcomes overall. In conclusion, our study provides valuable insights into the efficacy of different machine learning techniques for glucose measurement and highlights the importance of applying appropriate filtering methods in enhancing predictive accuracy. These findings have important implications for the development of new and improved glucose quantification technologies.

摘要

使用光谱法对葡萄糖进行定量分析是科学和工业领域中一个具有重大意义且备受关注的课题。该领域的一个难题是如何部署合适的预处理和回归工具。为了应对这一挑战,在本研究中,我们对应用于近红外、中红外以及近红外与中红外光谱组合用于葡萄糖检测的各种机器学习和预处理滤波技术进行了全面且新颖的比较分析。我们的目标是评估这些技术在准确预测葡萄糖水平方面的有效性,并确定哪种方法最为理想。我们的研究包括使用上述三种光谱技术从葡萄糖溶液样本中获取光谱数据。对数据进行了多种预处理滤波方法,包括卷积移动平均、Savitzky - Golay、多元散射校正和归一化。然后我们应用了来自三类的代表性机器学习算法:线性建模、传统非线性建模和人工神经网络。评估结果表明,线性模型的预测准确率高于非线性模型,而人工神经网络模型表现出相当的性能。此外,对各种滤波方法的比较分析表明,卷积移动平均和Savitzky - Golay滤波器总体上产生了最精确的结果。总之,我们的研究为不同机器学习技术在葡萄糖测量中的功效提供了有价值的见解,并突出了应用适当滤波方法在提高预测准确率方面的重要性。这些发现对新型和改进的葡萄糖定量技术的开发具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11dd/11108977/7ed98fd06f4e/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验