Suppr超能文献

伴有和不伴有糖尿病的个体 COVID-19 死亡率风险评估:集成解释框架的机器学习模型。

COVID-19 mortality risk assessments for individuals with and without diabetes mellitus: Machine learning models integrated with interpretation framework.

机构信息

Department of Electronic and Electrical Engineering, University of Sheffield, UK.

Department of Oncology and Metabolism, University of Sheffield, UK.

出版信息

Comput Biol Med. 2022 May;144:105361. doi: 10.1016/j.compbiomed.2022.105361. Epub 2022 Mar 2.

Abstract

This research develops machine learning models equipped with interpretation modules for mortality risk prediction and stratification in cohorts of hospitalised coronavirus disease-2019 (COVID-19) patients with and without diabetes mellitus (DM). To this end, routinely collected clinical data from 156 COVID-19 patients with DM and 349 COVID-19 patients without DM were scrutinised. First, a random forest classifier forecasted in-hospital COVID-19 fatality utilising admission data for each cohort. For the DM cohort, the model predicted mortality risk with the accuracy of 82%, area under the receiver operating characteristic curve (AUC) of 80%, sensitivity of 80%, and specificity of 56%. For the non-DM cohort, the achieved accuracy, AUC, sensitivity, and specificity were 80%, 84%, 91%, and 56%, respectively. The models were then interpreted using SHapley Additive exPlanations (SHAP), which explained predictors' global and local influences on model outputs. Finally, the k-means algorithm was applied to cluster patients on their SHAP values. The algorithm demarcated patients into three clusters. Average mortality rates within the generated clusters were 8%, 20%, and 76% for the DM cohort, 2.7%, 28%, and 41.9% for the non-DM cohort, providing a functional method of risk stratification.

摘要

本研究开发了配备解释模块的机器学习模型,用于预测和分层有糖尿病和无糖尿病的住院冠状病毒病 2019(COVID-19)患者队列的死亡率。为此,仔细研究了 156 名患有糖尿病的 COVID-19 患者和 349 名无糖尿病的 COVID-19 患者的常规临床数据。首先,随机森林分类器利用每个队列的入院数据预测住院 COVID-19 死亡率。对于 DM 队列,该模型预测死亡率的准确性为 82%,接收者操作特征曲线(AUC)为 80%,灵敏度为 80%,特异性为 56%。对于非 DM 队列,实现的准确性、AUC、灵敏度和特异性分别为 80%、84%、91%和 56%。然后使用 SHapley Additive exPlanations(SHAP)对模型进行解释,该解释说明了预测因子对模型输出的全局和局部影响。最后,应用 k-均值算法根据 SHAP 值对患者进行聚类。该算法将患者分为三个聚类。DM 队列中生成的聚类内的平均死亡率分别为 8%、20%和 76%,非 DM 队列中分别为 2.7%、28%和 41.9%,为风险分层提供了一种实用方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5131/8887960/5965be994520/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验