Suppr超能文献

采用 Aspen Plus 进行生物质生物润滑剂生产的 Box-Behnken 设计(BBD)优化与模拟及技术经济分析。

Box-Behnken design (BBD) for optimization and simulation of biolubricant production from biomass using aspen plus with techno-economic analysis.

机构信息

Chemical Engineering Department, Egyptian Academy for Engineering and Advanced Technology (EAEAT), Km 3 Cairo-Belbeis, Desert Road, PO box 3056, Cairo, Arab Republic of Egypt.

出版信息

Sci Rep. 2024 Sep 18;14(1):21769. doi: 10.1038/s41598-024-71266-w.

Abstract

The growing concern and limitations for existing lubricants have driven the need for biolubricants, extensively proposed as the most suitable and sustainable lubricating oils. Biolubricant refers to lubricants that quickly biodegrade and are non-toxic to humans and aquatic habitats. Over the last decade, there has been a significant increase in the production of biolubricants due to the rising demand for replacing petroleum-based lubricants with those derived from renewable sources like vegetable oils and lipase that are used in various applications. In this study biodiesel (FAME) produced from blending animal fats and waste cooking was used as a raw material with ethylene glycol for biolubricant production using a transesterification reaction in the presence of calcium oxide which considers the newest and novel part as there is no production of biolubricant from animal fats and waste cooking oil in previous researches. The reaction parameters of biolubricant production were optimized using response surface methodology (RSM) with the aid of Box Behnken Design (BBD) to study the effect of independent variables on the yield of biolubricant. These variables are temperature ranging from (100-150 °C), reaction time ranging from 1 to 4 h, and FAME (Fatty Acid Methyl Ester) to alcohol molar ratio ranging from (2:1) to (4:1). The highest biolubricant yield is 91.56% at a temperature of 141 °C, a FAME/alcohol molar ratio of 2:1, and 3.3 h. Various analyses were performed on the produced biolubricant at the optimum conditions. The results include a pour point of -9 °C, a flash point of 192 °C, a kinematic viscosity at 40 °C of 10.35 cSt, a viscosity index of 183.6, an ash content of 0.76 wt.%, and a carbon residue of 1.5 wt.%, comparing favorably with the ISO VG 10 standard. The production process of biolubricant was simulated with Aspen Plus version 11 using a Non-Random Two-Liquid (NRTL) fluid package. The simulation results indicated that the production process can be applied on an industrial scale. Economic analysis was performed on the biolubricants production plant. The total capital investment was $12.7 M with a payback period of 1.48 years and an internal rate of return (IRR) of 67.5% indicating the suitability and profitability of the biolubricant production.

摘要

由于对现有润滑剂的日益关注和局限性,生物润滑剂的需求不断增长,生物润滑剂被广泛认为是最适合和可持续的润滑油。生物润滑剂是指能够快速生物降解且对人类和水生生物无毒的润滑剂。在过去的十年中,由于人们对用可再生资源(如植物油和脂肪酶)生产的生物润滑剂替代石油基润滑剂的需求不断增加,生物润滑剂的产量显著增加,这些生物润滑剂可用于各种应用。在这项研究中,使用动物脂肪和废弃食用油混合生产的生物柴油(FAME)作为原料,在氧化钙存在下通过酯交换反应生产生物润滑剂,这是最新和新颖的部分,因为以前的研究中没有从动物脂肪和废弃食用油中生产生物润滑剂。使用响应面法(RSM)和 Box-Behnken 设计(BBD)优化生物润滑剂生产的反应参数,以研究独立变量对生物润滑剂产率的影响。这些变量是温度(100-150°C)、反应时间(1-4 小时)和 FAME(脂肪酸甲酯)与醇的摩尔比(2:1-4:1)。在温度为 141°C、FAME/醇摩尔比为 2:1、反应时间为 3.3 小时的条件下,生物润滑剂的产率最高,为 91.56%。在最佳条件下对所制备的生物润滑剂进行了各种分析。结果包括倾点为-9°C、闪点为 192°C、40°C时运动粘度为 10.35 cSt、粘度指数为 183.6、灰分含量为 0.76wt.%、残炭量为 1.5wt.%,与 ISO VG 10 标准相比具有良好的可比性。使用非随机双液相(NRTL)流体包在 Aspen Plus 版本 11 中模拟生物润滑剂的生产过程。模拟结果表明,该生产过程可应用于工业规模。对生物润滑剂生产厂进行了经济分析。总投资为 1270 万美元,投资回收期为 1.48 年,内部收益率(IRR)为 67.5%,表明生物润滑剂生产具有适宜性和盈利性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb7b/11413246/e3fe58cb2228/41598_2024_71266_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验