Chen Xiao, Yang Shiyu, Chen Guoxin, Xu Wei, Song Lijian, Li Ao, Yin Hangboce, Xia Weixing, Gao Meng, Li Ming, Wu Haichen, Cui Junfeng, Zhang Lei, Miao Lijing, Shui Xiaoxue, Xie Weiping, Ke Peiling, Huang Yongjiang, Sun Jianfei, Yao Bingnan, Ji Min, Xiang Mingliang, Zhang Yan, Zhao Shaofan, Yao Wei, Zou Zhigang, Yang Mengfei, Wang Weihua, Huo Juntao, Wang Jun-Qiang, Bai Haiyang
Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
Innovation (Camb). 2024 Aug 22;5(5):100690. doi: 10.1016/j.xinn.2024.100690. eCollection 2024 Sep 9.
Finding water resources is a crucial objective of lunar missions. However, both hydroxyl (OH) and natural water (HO) have been reported to be scarce on the Moon. We propose a potential method for obtaining water on the Moon through HO formation via endogenous reactions in lunar regolith (LR), specifically through the reaction FeO/FeO + H → Fe + HO. This process is demonstrated using LR samples brought back by the Chang'E-5 mission. FeO and FeO are lunar minerals containing Fe oxides. Hydrogen (H) retained in lunar minerals from the solar wind can be used to produce water. The results of this study reveal that 51-76 mg of HO can be generated from 1 g of LR after melting at temperatures above 1,200 K. This amount is ∼10,000 times the naturally occurring OH and HO on the Moon. Among the five primary minerals in LR returned by the Chang'E-5 mission, FeTiO ilmenite contains the highest amount of H, owing to its unique lattice structure with sub-nanometer tunnels. For the first time, heating experiments using a transmission electron microscope reveal the concurrent formation of Fe crystals and HO bubbles. Electron irradiation promotes the endogenous redox reaction, which is helpful for understanding the distribution of OH on the Moon. Our findings suggest that the hydrogen retained in LR is a significant resource for obtaining HO on the Moon, which is helpful for establishing a scientific research station on the Moon.
寻找水资源是月球探测任务的一个关键目标。然而,据报道,月球上的羟基(OH)和天然水(H₂O)都很稀缺。我们提出了一种在月球上通过月壤(LR)中的内源性反应形成H₂O来获取水的潜在方法,具体是通过FeO/FeO + H → Fe + H₂O反应。利用嫦娥五号任务带回的LR样本对这一过程进行了验证。FeO和FeO是含Fe氧化物的月球矿物。太阳风保留在月球矿物中的氢可用于生产水。这项研究的结果表明,1克LR在1200K以上温度熔化后可产生51 - 76毫克H₂O。这个量是月球上自然存在的OH和H₂O的约10000倍。在嫦娥五号带回的LR的五种主要矿物中,钛铁矿(FeTiO₃)由于其具有亚纳米隧道的独特晶格结构,含有最高量的H。首次利用透射电子显微镜进行的加热实验揭示了Fe晶体和H₂O气泡的同时形成。电子辐照促进了内源性氧化还原反应,这有助于理解月球上OH的分布。我们的研究结果表明,LR中保留的氢是在月球上获取H₂O的重要资源,这有助于在月球上建立科研站。