Suppr超能文献

利用等变图神经网络发现高度各向异性介电晶体。

Discovery of highly anisotropic dielectric crystals with equivariant graph neural networks.

作者信息

Lou Yuchen, Ganose Alex M

机构信息

Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, Wood Lane, London W12 0BZ, UK.

出版信息

Faraday Discuss. 2025 Jan 14;256(0):255-274. doi: 10.1039/d4fd00096j.

Abstract

Anisotropy in crystals plays a pivotal role in many technological applications. For example, anisotropic electronic and thermal transport are thought to be beneficial for thermoelectric applications, while anisotropic mechanical properties are of interest for emerging metamaterials, and anisotropic dielectric materials have been suggested as a novel platform for dark matter detection. Understanding and tailoring anisotropy in crystals is therefore essential for the design of next-generation functional materials. To date, however, most data-driven approaches have focused on the prediction of scalar crystal properties, such as the spherically averaged dielectric tensor or the bulk and shear elastic moduli. Here, we adopt the latest approaches in equivariant graph neural networks to develop a model that can predict the full dielectric tensor of crystals. Our model, trained on the Materials Project dataset of 6700 dielectric tensors, achieves state-of-the-art accuracy in scalar dielectric prediction in addition to capturing the directional response. We showcase the performance of the model by discovering crystals with almost isotropic connectivity but highly anisotropic dielectric tensors, thereby broadening our knowledge of the structure-property relationships in dielectric crystals.

摘要

晶体中的各向异性在许多技术应用中起着关键作用。例如,各向异性的电子和热传输被认为对热电应用有益,而各向异性的力学性能对于新兴的超材料很重要,并且各向异性介电材料已被提议作为暗物质探测的新型平台。因此,理解和调控晶体中的各向异性对于下一代功能材料的设计至关重要。然而,迄今为止,大多数数据驱动的方法都集中在标量晶体性质的预测上,比如球对称平均介电张量或体弹性模量和剪切弹性模量。在这里,我们采用等变图神经网络中的最新方法来开发一个能够预测晶体全介电张量的模型。我们的模型在包含6700个介电张量的材料项目数据集上进行训练,除了能够捕捉方向响应外,在标量介电预测方面还达到了当前的最高精度。我们通过发现具有几乎各向同性连通性但介电张量高度各向异性的晶体来展示该模型的性能,从而拓宽了我们对介电晶体中结构 - 属性关系的认识。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验