Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States.
Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States.
J Phys Chem A. 2023 Mar 16;127(10):2388-2398. doi: 10.1021/acs.jpca.2c07530. Epub 2023 Mar 2.
The nuclear magnetic resonance (NMR) chemical shift tensor is a highly sensitive probe of the electronic structure of an atom and furthermore its local structure. Recently, machine learning has been applied to NMR in the prediction of isotropic chemical shifts from a structure. Current machine learning models, however, often ignore the full chemical shift tensor for the easier-to-predict isotropic chemical shift, effectively ignoring a multitude of structural information available in the NMR chemical shift tensor. Here we use an equivariant graph neural network (GNN) to predict full Si chemical shift tensors in silicate materials. The equivariant GNN model predicts full tensors to a mean absolute error of 1.05 ppm and is able to accurately determine the magnitude, anisotropy, and tensor orientation in a diverse set of silicon oxide local structures. When compared with other models, the equivariant GNN model outperforms the state-of-the-art machine learning models by 53%. The equivariant GNN model also outperforms historic analytical models by 57% for isotropic chemical shift and 91% for anisotropy. The software is available as a simple-to-use open-source repository, allowing similar models to be created and trained with ease.
核磁共振(NMR)化学位移张量是探测原子电子结构及其局部结构的高度灵敏探针。最近,机器学习已被应用于 NMR 领域,用于从结构预测各向同性化学位移。然而,当前的机器学习模型通常忽略了更易于预测的各向同性化学位移的完整化学位移张量,从而有效地忽略了 NMR 化学位移张量中提供的大量结构信息。在这里,我们使用等变图神经网络(GNN)来预测硅酸盐材料中的完整 Si 化学位移张量。该等变 GNN 模型对全张量的平均绝对误差为 1.05ppm,能够准确确定一组不同的氧化硅局部结构中的大小、各向异性和张量方向。与其他模型相比,该等变 GNN 模型的性能优于最先进的机器学习模型 53%。该等变 GNN 模型在各向同性化学位移和各向异性方面的性能也分别优于历史分析模型 57%和 91%。该软件作为一个易于使用的开源存储库提供,允许轻松创建和训练类似的模型。