Li Pengyan, Qi Zhenhong, Yan Dongpeng
Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.
Angew Chem Int Ed Engl. 2024 Dec 2;63(49):e202411000. doi: 10.1002/anie.202411000. Epub 2024 Nov 2.
Efficient synthesis of CHOH (n=1, 2) via photochemical CO reduction holds promise for achieving carbon neutrality but remains challenging. Here, we present rare earth dual single atoms (SAs) catalysts containing ErN and NdN moieties, fabricated via an atom-confinement and coordination method. The dual Er-Nd SAs catalysts exhibit unprecedented generation rates of 1761.4 μmol g h and 987.7 μmol g h for CHCHOH and CHOH, respectively. Through a combination of theoretical calculation, XAFS analysis, aberration-corrected HAADF-STEM, and in-situ FTIR spectroscopy, we demonstrate that the Er SAs facilitate charge transfer, serving as active centers for C-C bond formation, while Nd SAs provide the necessary *CO for C-C coupling in CHOH synthesis under visible light. Furthermore, the experiment and DFT calculation elucidate that the variety of electronic states induced by 4 f orbitals of the Er SAs and the p-f orbital hybridization of Er-N moieties enable the formation of charge-transfer channel. Therefore, this study sheds light on the pivotal role of *CO adsorption in achieving efficient conversion from CO to CHOH (n=1, 2) via a novel rare earth-based dual SAs photocatalysis approach.
通过光化学一氧化碳还原高效合成CHOH(n=1, 2)有望实现碳中和,但仍具有挑战性。在此,我们展示了一种通过原子限制和配位方法制备的含ErN和NdN部分的稀土双单原子(SAs)催化剂。双Er-Nd SAs催化剂对CHCHOH和CHOH的生成速率分别达到了前所未有的1761.4 μmol g h和987.7 μmol g h。通过理论计算、XAFS分析、像差校正HAADF-STEM和原位FTIR光谱相结合的方法,我们证明了Er SAs促进电荷转移,作为C-C键形成的活性中心,而Nd SAs在可见光下为CHOH合成中的C-C偶联提供必要的CO。此外,实验和DFT计算表明,Er SAs的4 f轨道诱导的多种电子态以及Er-N部分的p-f轨道杂化能够形成电荷转移通道。因此,本研究揭示了CO吸附在通过一种新型稀土基双SAs光催化方法实现从CO到CHOH(n=1, 2)高效转化中的关键作用。