Suppr超能文献

通过主体功能化解决宽禁带半导体的不对称掺杂:量子工程策略

Solving the Asymmetric Doping for Wide-Gap Semiconductors by Host Functionalization: Quantum Engineering Strategy.

作者信息

Ma Xiaobao, Shi Zhiming, Zang Hang, Jiang Ke, Yang Yuxin, Zhang Feng, Lv Shunpeng, Li Shaojuan, Sun Xiaojuan, Li Dabing

机构信息

Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2024 Oct 2;16(39):52604-52612. doi: 10.1021/acsami.4c08689. Epub 2024 Sep 20.

Abstract

Asymmetric doping of wide-gap semiconductors has long been a major challenge, hindering their wider applications. Despite numerous attempts to address this issue through engineering doping levels, the results were still inconclusive. In this work, we propose a quantum engineering strategy based on the state-of-the-art spin-polarized HSE06 hybrid functional method. The local band offset between the host and quantum structures can considerably compensate for the large carrier activation energy (). We chose the system of the AlN host embedded by GaN quantum dots as an example to validate the feasibility of this strategy. The of Si (n-type) and Be (p-type) dopants can be reduced from 222 and 404 meV to negative values and 2 meV, respectively. Therefore, electron and hole density can be increased to more than 10 and 10 cm, respectively. We also tested potential dopants (C and Ge for the n-type, Mg and Ca for the p-type), and the technique is equally effective. This mechanism can also be used to understand the experimental observations of the superlattice doping strategy. Overall, our study demonstrates that the quantum engineering strategy provides a potential solution to overcome the asymmetric doping problem for universal wide-gap semiconductors and supports a feasible pathway for more efficient devices in the future.

摘要

宽带隙半导体的非对称掺杂长期以来一直是一个重大挑战,阻碍了它们更广泛的应用。尽管人们多次尝试通过设计掺杂水平来解决这个问题,但结果仍然没有定论。在这项工作中,我们提出了一种基于最先进的自旋极化HSE06混合泛函方法的量子工程策略。主体与量子结构之间的局部带隙偏移可以显著补偿较大的载流子激活能()。我们选择了由GaN量子点嵌入的AlN主体系统作为例子来验证该策略的可行性。Si(n型)和Be(p型)掺杂剂的(此处原文缺失相关内容)可以分别从222和404毫电子伏特降低到负值和2毫电子伏特。因此,电子和空穴密度可以分别增加到超过10和10厘米(此处原文表述似乎有误)。我们还测试了潜在的掺杂剂(n型的C和Ge,p型的Mg和Ca),并且该技术同样有效。这种机制也可用于理解超晶格掺杂策略的实验观察结果。总体而言,我们的研究表明,量子工程策略为克服通用宽带隙半导体的非对称掺杂问题提供了一种潜在的解决方案,并为未来更高效的器件提供了一条可行的途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验