Suppr超能文献

主体间动态条件相关:一种跟踪自然刺激下逐帧网络影响的新方法。

Intersubject Dynamic Conditional Correlation: A Novel Method to Track the Framewise Network Implication during Naturalistic Stimuli.

机构信息

Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China.

Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China.

出版信息

Brain Connect. 2024 Nov;14(9):471-488. doi: 10.1089/brain.2023.0075. Epub 2024 Oct 2.

Abstract

Naturalistic stimuli have become increasingly popular in modern cognitive neuroscience. These stimuli have high ecological validity due to their rich and multilayered features. However, their complexity also presents methodological challenges for uncovering neural network reconfiguration. Dynamic functional connectivity using the sliding-window technique is commonly used but has several limitations. In this study, we introduce a new method called intersubject dynamic conditional correlation (ISDCC). ISDCC uses intersubject analysis to remove intrinsic and non-neuronal signals, retaining only intersubject-consistent stimuli-induced signals. It then applies dynamic conditional correlation (DCC) based on the generalized autoregressive conditional heteroskedasticity to calculate the framewise functional connectivity. To validate ISDCC, we analyzed simulation data with known network reconfiguration patterns and two publicly available narrative functional Magnetic Resonance Imaging (fMRI) datasets. (1) ISDCC accurately unveiled the underlying network reconfiguration patterns in simulation data, demonstrating greater sensitivity than DCC; (2) ISDCC identified synchronized network reconfiguration patterns across listeners; (3) ISDCC effectively differentiated between stimulus types with varying temporal coherence; and (4) network reconfigurations unveiled by ISDCC were significantly correlated with listener engagement during narrative comprehension. ISDCC is a precise and dynamic method for tracking network implications in response to naturalistic stimuli.

摘要

自然刺激在现代认知神经科学中变得越来越流行。由于其丰富多样的特征,这些刺激具有很高的生态有效性。然而,它们的复杂性也为揭示神经网络重新配置带来了方法学上的挑战。使用滑动窗口技术的动态功能连接通常被使用,但有几个局限性。在这项研究中,我们引入了一种称为主体间动态条件相关(ISDCC)的新方法。ISDCC 使用主体间分析去除内在和非神经元信号,只保留主体间一致的刺激诱导信号。然后,它应用基于广义自回归条件异方差的动态条件相关(DCC)来计算逐帧功能连接。为了验证 ISDCC,我们分析了具有已知网络重新配置模式的模拟数据和两个公开可用的叙述性功能磁共振成像(fMRI)数据集。(1)ISDCC 准确揭示了模拟数据中的潜在网络重新配置模式,比 DCC 更敏感;(2)ISDCC 识别了跨听众的同步网络重新配置模式;(3)ISDCC 有效地区分了具有不同时间相干性的刺激类型;(4)ISDCC 揭示的网络重新配置与叙述理解过程中听众的参与度显著相关。ISDCC 是一种精确和动态的方法,用于跟踪对自然刺激的网络影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验