Müller R, Göpfert E, Hartwig M
EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb. 1985 Jun;16(2):75-80.
Knowledge referring to the kind of velocity coding in human cortex can be obtained either by psychophysical methods or by recording of visually evoked cortical potentials (VEPs). With the help of adaptation experiments it is possible to distinguish between the additive and substitutive coding principle. VEPs were evoked by the onset of movement of a grating pattern (test stimulus). The most prominent waves N2 and P2 increased with accelerating test stimulus velocity within a range of 0.2-4 deg/s (see strong curve in Fig. 6a and 7a). Moving gratings (adaptation stimuli) were additionally presented in corresponding runs during the intervals between the test stimuli to attain a stable level of movement adaptation. The additional movement stimulation reduced the VEP amplitudes in general (see weak lines in Figs. 6a, 7a and relative amplitudes in Figs. 6b, 7b). When the adaptation stimulus velocity was raised within a range of 0.1-4 deg/s (see values of the abscissas in Figs. 6 and 7 indicated by symbols with arrow) the relative VEP amplitude became smaller (decrease from curve to x). This result points to the validity of the additive coding principle. The different behavior of the delta-curve supports the hypothesis of a second channel for velocities faster than 1 deg/s.
关于人类皮层中速度编码类型的知识可以通过心理物理学方法或记录视觉诱发皮层电位(VEP)来获得。借助适应实验,可以区分相加编码原则和替代编码原则。VEP由光栅图案运动的开始(测试刺激)诱发。在0.2 - 4度/秒的范围内,随着测试刺激速度的加快,最显著的波N2和P2增大(见图6a和7a中的粗曲线)。在测试刺激的间隔期间,在相应的实验过程中额外呈现移动光栅(适应刺激),以达到稳定的运动适应水平。额外的运动刺激总体上降低了VEP的振幅(见图6a、7a中的细曲线以及图6b、7b中的相对振幅)。当适应刺激速度在0.1 - 4度/秒的范围内提高时(见图6和7中横坐标上由带箭头符号指示的值),相对VEP振幅变小(从曲线下降到x)。这一结果表明相加编码原则的有效性。δ曲线的不同表现支持了存在一个用于速度高于1度/秒的第二通道的假设。