Suppr超能文献

用于人群异常检测的优化深度最大池化:一种基于混合优化的模型。

Optimized deep maxout for crowd anomaly detection: A hybrid optimization-based model.

作者信息

Chaudhary Rashmi, Kumar Manoj

机构信息

University School of Information, Communication and Technology, Guru Gobind Singh Indraprastha University, Delhi, India.

Department of Computer Science and Engineering, Netaji Subhas University of Technology, Delhi, India.

出版信息

Network. 2025 Feb;36(1):148-173. doi: 10.1080/0954898X.2024.2392772. Epub 2024 Sep 20.

Abstract

Monitoring Surveillance video is really time-consuming, and the complexity of typical crowd behaviour in crowded situations makes this even more challenging. This has sparked a curiosity about computer vision-based anomaly detection. This study introduces a new crowd anomaly detection method with two main steps: Visual Attention Detection and Anomaly Detection. The Visual Attention Detection phase uses an Enhanced Bilateral Texture-Based Methodology to pinpoint crucial areas in crowded scenes, improving anomaly detection precision. Next, the Anomaly Detection phase employs Optimized Deep Maxout Network to robustly identify unusual behaviours. This network's deep learning capabilities are essential for detecting complex patterns in diverse crowd scenarios. To enhance accuracy, the model is trained using the innovative Battle Royale Coalesced Atom Search Optimization (BRCASO) algorithm, which fine-tunes optimal weights for superior performance, ensuring heightened detection accuracy and reliability. Lastly, using various performance metrics, the suggested work's effectiveness will be contrasted with that of the other traditional approaches. The proposed crowd anomaly detection is implemented in Python. On observing the result showed that the suggested model attains a detection accuracy of 97.28% at a learning rate of 90%, which is much superior than the detection accuracy of other models, including ASO = 90.56%, BMO = 91.39%, BES = 88.63%, BRO = 86.98%, and FFLY = 89.59%.

摘要

监控监控视频非常耗时,而且在拥挤场景中典型人群行为的复杂性使得这一任务更具挑战性。这引发了人们对基于计算机视觉的异常检测的好奇。本研究介绍了一种新的人群异常检测方法,主要包括两个步骤:视觉注意力检测和异常检测。视觉注意力检测阶段使用基于增强双边纹理的方法来确定拥挤场景中的关键区域,提高异常检测精度。接下来,异常检测阶段采用优化的深度最大输出网络来稳健地识别异常行为。该网络的深度学习能力对于检测不同人群场景中的复杂模式至关重要。为了提高准确性,使用创新的皇家战斗合并原子搜索优化(BRCASO)算法对模型进行训练,该算法微调最优权重以实现卓越性能,确保更高的检测准确性和可靠性。最后,使用各种性能指标,将所提出工作的有效性与其他传统方法进行对比。所提出的人群异常检测是用Python实现的。观察结果表明,所提出的模型在学习率为90%时达到了97.28%的检测准确率,这比其他模型的检测准确率要高得多,其他模型包括ASO = 90.56%、BMO = 91.39%、BES = 88.63%、BRO = 86.98%和FFLY = 89.59%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验