Suppr超能文献

知识图嵌入技术在化学中的研究进展与应用

Research Progresses and Applications of Knowledge Graph Embedding Technique in Chemistry.

机构信息

School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450001, China.

Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.

出版信息

J Chem Inf Model. 2024 Oct 14;64(19):7189-7213. doi: 10.1021/acs.jcim.4c00791. Epub 2024 Sep 20.

Abstract

A knowledge graph (KG) is a technique for modeling entities and their interrelations. Knowledge graph embedding (KGE) translates these entities and relationships into a continuous vector space to facilitate dense and efficient representations. In the domain of chemistry, applying KG and KGE techniques integrates heterogeneous chemical information into a coherent and user-friendly framework, enhances the representation of chemical data features, and is beneficial for downstream tasks, such as chemical property prediction. This paper begins with a comprehensive review of classical and contemporary KGE methodologies, including distance-based models, semantic matching models, and neural network-based approaches. We then catalogue the primary databases employed in chemistry and biochemistry that furnish the KGs with essential chemical data. Subsequently, we explore the latest applications of KG and KGE in chemistry, focusing on risk assessment, property prediction, and drug discovery. Finally, we discuss the current challenges to KG and KGE techniques and provide a perspective on their potential future developments.

摘要

知识图谱(KG)是一种用于对实体及其关系进行建模的技术。知识图谱嵌入(KGE)将这些实体和关系转化为连续的向量空间,以促进密集和高效的表示。在化学领域,应用 KG 和 KGE 技术将异构化学信息集成到一个连贯且用户友好的框架中,增强了化学数据特征的表示,有利于下游任务,如化学性质预测。本文首先全面回顾了经典和现代的 KGE 方法,包括基于距离的模型、语义匹配模型和基于神经网络的方法。然后,我们列出了化学和生物化学中使用的主要数据库,这些数据库为 KGs 提供了必要的化学数据。随后,我们探讨了 KG 和 KGE 在化学中的最新应用,重点关注风险评估、性质预测和药物发现。最后,我们讨论了 KG 和 KGE 技术目前面临的挑战,并对其未来的发展方向进行了展望。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验