Suppr超能文献

从数据提取到分析:科学文献中ELISE功能的比较研究

From data extraction to analysis: a comparative study of ELISE capabilities in scientific literature.

作者信息

Gobin Maxime, Gosnat Muriel, Toure Seindé, Faik Lina, Belafa Joel, Villedieu de Torcy Antoine, Armstrong Florence

机构信息

Biolevate, Paris, France.

出版信息

Front Artif Intell. 2025 May 12;8:1587244. doi: 10.3389/frai.2025.1587244. eCollection 2025.

Abstract

The exponential growth of scientific literature presents challenges for pharmaceutical, biotechnological, and Medtech industries, particularly in regulatory documentation, clinical research, and systematic reviews. Ensuring accurate data extraction, literature synthesis, and compliance with industry standards require AI tools that not only streamline workflows but also uphold scientific rigor. This study evaluates the performance of AI tools designed for bibliographic review, data extraction, and scientific synthesis, assessing their impact on decision-making, regulatory compliance, and research productivity. The AI tools assessed include general-purpose models like ChatGPT and specialized solutions such as ELISE (Elevated LIfe SciencEs), SciSpace/Typeset, Humata, and Epsilon. The evaluation is based on three main criteria: Extraction, Comprehension, and Analysis with Compliance and Traceability (ECACT) as additional dimensions. Human experts established reference benchmarks, while AI Evaluator models ensure objective performance measurement. The study introduces the ECACT score, a structured metric assessing AI reliability in scientific literature analysis, regulatory reporting and clinical documentation. Results demonstrate that ELISE consistently outperforms other AI tools, excelling in precise data extraction, deep contextual comprehension, and advanced content analysis. ELISE's ability to generate traceable, well-reasoned insights makes it particularly well-suited for high-stakes applications such as regulatory affairs, clinical trials, and medical documentation, where accuracy, transparency, and compliance are paramount. Unlike other AI tools, ELISE provides expert-level reasoning and explainability, ensuring AI-generated insights align with industry best practices. ChatGPT is efficient in data retrieval but lacks precision in complex analysis, limiting its use in high-stakes decision-making. Epsilon, Humata, and SciSpace/Typeset exhibit moderate performance, with variability affecting their reliability in critical applications. In conclusion, while AI tools such as ELISE enhance literature review, regulatory writing, and clinical data interpretation, human oversight remains essential to validate AI outputs and ensure compliance with scientific and regulatory standards. For pharmaceutical, biotechnological, and Medtech industries, AI integration must strike a balance between automation and expert supervision to maintain data integrity, transparency, and regulatory adherence.

摘要

科学文献的指数级增长给制药、生物技术和医疗科技行业带来了挑战,尤其是在监管文件、临床研究和系统评价方面。确保准确的数据提取、文献综合以及符合行业标准,需要人工智能工具,这些工具不仅要简化工作流程,还要保持科学严谨性。本研究评估了为文献综述、数据提取和科学综合而设计的人工智能工具的性能,评估它们对决策、监管合规性和研究生产力的影响。所评估的人工智能工具包括ChatGPT等通用模型以及ELISE(提升生命科学)、SciSpace/Typeset、Humata和Epsilon等专业解决方案。评估基于三个主要标准:提取、理解和分析,并将合规性与可追溯性(ECACT)作为附加维度。人类专家建立了参考基准,而人工智能评估模型确保客观的性能测量。该研究引入了ECACT分数,这是一种结构化指标,用于评估人工智能在科学文献分析、监管报告和临床文档中的可靠性。结果表明,ELISE始终优于其他人工智能工具,在精确的数据提取、深入的上下文理解和高级内容分析方面表现出色。ELISE生成可追溯、推理充分的见解的能力使其特别适合于监管事务、临床试验和医疗文档等高风险应用,在这些应用中,准确性、透明度和合规性至关重要。与其他人工智能工具不同,ELISE提供专家级推理和可解释性,确保人工智能生成的见解符合行业最佳实践。ChatGPT在数据检索方面效率很高,但在复杂分析中缺乏精确性,限制了其在高风险决策中的应用。Epsilon、Humata和SciSpace/Typeset表现中等,其变异性影响了它们在关键应用中的可靠性。总之,虽然ELISE等人工智能工具增强了文献综述、监管写作和临床数据解释,但人工监督对于验证人工智能输出并确保符合科学和监管标准仍然至关重要。对于制药、生物技术和医疗科技行业而言,人工智能集成必须在自动化和专家监督之间取得平衡,以维护数据完整性、透明度和监管合规性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/685b/12104259/cb2c2415d92a/frai-08-1587244-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验