Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States.
Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, NJ 08854, United States.
Toxicol Sci. 2024 Dec 1;202(2):179-195. doi: 10.1093/toxsci/kfae110.
Bile acid (BA) signaling dysregulation is an important etiology for the development of metabolic dysfunction-associated steatotic liver disease (MASLD). As diverse signaling molecules synthesized in the liver by pathways initiated with CYP7A1 and CYP27A1, BAs are endogenous modulators of farnesoid x receptor (FXR). FXR activation is crucial in maintaining BA homeostasis, regulating lipid metabolism, and suppressing inflammation. Additionally, BAs interact with membrane receptors and gut microbiota to regulate energy expenditure and intestinal health. Complex modulation of BAs in vivo and the lack of suitable animal models impede our understanding of the functions of individual BAs, especially during MASLD development. Previously, we determined that acute feeding of individual BAs differentially affects lipid, inflammation, and oxidative stress pathways in a low-BA mouse model, Cyp7a1/Cyp27a1 double knockout (DKO) mice. Currently, we investigated to what degree cholic acid (CA), deoxycholic acid (DCA), or ursodeoxycholic acid (UDCA) at physiological concentrations impact MASLD development in DKO mice. The results showed that these 3 BAs varied in the ability to activate hepatic and intestinal FXR, disrupt lipid homeostasis, and modulate inflammation and fibrosis. Additionally, UDCA activated intestinal FXR in these low-BA mice. Significant alterations in lipid uptake and metabolism in DKO mice following CA and DCA feeding indicate differences in cholesterol and lipid handling across genotypes. Overall, the DKO were less susceptible to weight gain, but more susceptible to MASH diet induced inflammation and fibrosis on CA and DCA supplements, whereas WT mice were more vulnerable to CA-induced fibrosis on the control diet.
胆汁酸(BA)信号失调是代谢功能相关脂肪性肝病(MASLD)发展的重要病因。作为肝脏中通过 CYP7A1 和 CYP27A1 途径合成的多种信号分子,BA 是法尼醇 X 受体(FXR)的内源性调节剂。FXR 的激活对于维持 BA 内稳态、调节脂质代谢和抑制炎症至关重要。此外,BA 与膜受体和肠道微生物群相互作用,以调节能量消耗和肠道健康。体内 BA 的复杂调节以及缺乏合适的动物模型,阻碍了我们对个体 BA 功能的理解,特别是在 MASLD 发展过程中。之前,我们确定了在低 BA 小鼠模型 Cyp7a1/Cyp27a1 双敲除(DKO)小鼠中,单独的 BA 急性喂养会以不同的方式影响脂质、炎症和氧化应激途径。目前,我们研究了生理浓度的胆酸(CA)、脱氧胆酸(DCA)或熊去氧胆酸(UDCA)在多大程度上影响 DKO 小鼠的 MASLD 发展。结果表明,这 3 种 BA 在激活肝和肠 FXR、破坏脂质内稳态以及调节炎症和纤维化方面的能力存在差异。此外,UDCA 在这些低 BA 小鼠中激活了肠 FXR。CA 和 DCA 喂养后 DKO 小鼠的脂质摄取和代谢发生显著变化,表明不同基因型的胆固醇和脂质处理存在差异。总的来说,DKO 小鼠对体重增加的敏感性较低,但对 CA 和 DCA 补充剂引起的 MAS 饮食诱导的炎症和纤维化更敏感,而 WT 小鼠对对照饮食中 CA 诱导的纤维化更敏感。