Zhao Zexing, Shi Guangsi, Wu Xiaopeng, Ren Ruohua, Gao Xiaojun, Li Fuyi
IEEE J Biomed Health Inform. 2025 Mar;29(3):1735-1746. doi: 10.1109/JBHI.2024.3464674. Epub 2025 Mar 6.
Molecular property prediction is a key component of AI-driven drug discovery and molecular characterization learning. Despite recent advances, existing methods still face challenges such as limited ability to generalize, and inadequate representation of learning from unlabeled data, especially for tasks specific to molecular structures. To address these limitations, we introduce DIG-Mol, a novel self-supervised graph neural network framework for molecular property prediction. This architecture leverages the power of contrast learning with dual interaction mechanisms and unique molecular graph enhancement strategies. DIG-Mol integrates a momentum distillation network with two interconnected networks to efficiently improve molecular characterization. The framework's ability to extract key information about molecular structure and higher-order semantics is supported by minimizing loss of contrast. We have established DIG-Mol's state-of-the-art performance through extensive experimental evaluation in a variety of molecular property prediction tasks. In addition to demonstrating superior transferability in a small number of learning scenarios, our visualizations highlight DIG-Mol's enhanced interpretability and representation capabilities. These findings confirm the effectiveness of our approach in overcoming challenges faced by traditional methods and mark a significant advance in molecular property prediction.
分子性质预测是人工智能驱动的药物发现和分子特征学习的关键组成部分。尽管最近取得了进展,但现有方法仍然面临诸如泛化能力有限以及从未标记数据中学习的表示不足等挑战,特别是对于分子结构特定的任务。为了解决这些限制,我们引入了DIG-Mol,这是一种用于分子性质预测的新型自监督图神经网络框架。该架构利用对比学习的力量,采用双交互机制和独特的分子图增强策略。DIG-Mol将动量蒸馏网络与两个相互连接的网络集成在一起,以有效地改善分子特征。通过最小化对比损失,支持了该框架提取有关分子结构和高阶语义的关键信息的能力。我们通过在各种分子性质预测任务中的广泛实验评估,确立了DIG-Mol的领先性能。除了在少数学习场景中展示出卓越的可迁移性外,我们的可视化突出了DIG-Mol增强的可解释性和表示能力。这些发现证实了我们的方法在克服传统方法所面临挑战方面的有效性,并标志着分子性质预测取得了重大进展。