Suppr超能文献

针对残疾老年人的长期护理计划建议:一种二分图变压器和自监督方法。

Long-term care plan recommendation for older adults with disabilities: a bipartite graph transformer and self-supervised approach.

作者信息

Miao Chunlong, Luo Jingjing, Liang Yan, Liang Hong, Cen Yuhui, Guo Shijie, Yu Hongliu

机构信息

Institute of AI and Robotics, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China.

Robotics Engineering Research Center, Ji Hua Laboratory, Foshan, 528200, China.

出版信息

J Am Med Inform Assoc. 2025 Apr 1;32(4):689-701. doi: 10.1093/jamia/ocae327.

Abstract

BACKGROUND

With the global population aging and advancements in the medical system, long-term care in healthcare institutions and home settings has become essential for older adults with disabilities. However, the diverse and scattered care requirements of these individuals make developing effective long-term care plans heavily reliant on professional nursing staff, and even experienced caregivers may make mistakes or face confusion during the care plan development process. Consequently, there is a rigid demand for intelligent systems that can recommend comprehensive long-term care plans for older adults with disabilities who have stable clinical conditions.

OBJECTIVE

This study aims to utilize deep learning methods to recommend comprehensive care plans for the older adults with disabilities.

METHODS

We model the care data of older adults with disabilities using a bipartite graph. Additionally, we employ a prediction-based graph self-supervised learning (SSL) method to mine deep representations of graph nodes. Furthermore, we propose a novel graph Transformer architecture that incorporates eigenvector centrality to augment node features and uses graph structural information as references for the self-attention mechanism. Ultimately, we present the Bipartite Graph Transformer (BiT) model to provide personalized long-term care plan recommendation.

RESULTS

We constructed a bipartite graph comprising of 1917 nodes and 195 240 edges derived from real-world care data. The proposed model demonstrates outstanding performance, achieving an overall F1 score of 0.905 for care plan recommendations. Each care service item reached an average F1 score of 0.897, indicating that the BiT model is capable of accurately selecting services and effectively balancing the trade-off between incorrect and missed selections.

DISCUSSION

The BiT model proposed in this paper demonstrates strong potential for improving long-term care plan recommendations by leveraging bipartite graph modeling and graph SSL. This approach addresses the challenges of manual care planning, such as inefficiency, bias, and errors, by offering personalized and data-driven recommendations. While the model excels in common care items, its performance on rare or complex services could be enhanced with further refinement. These findings highlight the model's ability to provide scalable, AI-driven solutions to optimize care planning, though future research should explore its applicability across diverse healthcare settings and service types.

CONCLUSIONS

Compared to previous research, the novel model proposed in this article effectively learns latent topology in bipartite graphs and achieves superior recommendation performance. Our study demonstrates the applicability of SSL and graph transformers in recommending long-term care plans for older adults with disabilities.

摘要

背景

随着全球人口老龄化以及医疗系统的进步,医疗机构和家庭环境中的长期护理对于残疾老年人来说变得至关重要。然而,这些人的护理需求多样且分散,使得制定有效的长期护理计划严重依赖专业护理人员,甚至经验丰富的护理人员在护理计划制定过程中也可能犯错或感到困惑。因此,对于能够为临床状况稳定的残疾老年人推荐全面长期护理计划的智能系统存在迫切需求。

目的

本研究旨在利用深度学习方法为残疾老年人推荐全面的护理计划。

方法

我们使用二分图对残疾老年人的护理数据进行建模。此外,我们采用基于预测的图自监督学习(SSL)方法来挖掘图节点的深度表示。此外,我们提出了一种新颖的图Transformer架构,该架构结合特征向量中心性来增强节点特征,并将图结构信息用作自注意力机制的参考。最终,我们提出了二分图Transformer(BiT)模型来提供个性化的长期护理计划推荐。

结果

我们构建了一个由来自真实世界护理数据的1917个节点和195240条边组成的二分图。所提出的模型表现出色,护理计划推荐的总体F1分数达到0.905。每个护理服务项目的平均F1分数达到0.897,表明BiT模型能够准确选择服务,并有效地平衡错误选择和遗漏选择之间的权衡。

讨论

本文提出的BiT模型通过利用二分图建模和图SSL,在改进长期护理计划推荐方面显示出强大的潜力。这种方法通过提供个性化和数据驱动的推荐,解决了人工护理计划的挑战,如效率低下、偏差和错误。虽然该模型在常见护理项目方面表现出色,但在罕见或复杂服务上的性能可以通过进一步优化得到提高。这些发现突出了该模型提供可扩展的、人工智能驱动的解决方案以优化护理计划的能力,不过未来的研究应该探索其在不同医疗环境和服务类型中的适用性。

结论

与先前的研究相比,本文提出的新模型有效地学习了二分图中的潜在拓扑结构,并取得了卓越的推荐性能。我们的研究证明了SSL和图Transformer在为残疾老年人推荐长期护理计划方面的适用性。

相似文献

本文引用的文献

4
Translation and cross-cultural adaptation of the Clinical Care Classification system.临床护理分类系统的翻译与文化调适。
Int J Med Inform. 2021 Sep;153:104534. doi: 10.1016/j.ijmedinf.2021.104534. Epub 2021 Jul 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验