Suppr超能文献

事件增强快照拼接高光谱帧去模糊

Event-Enhanced Snapshot Mosaic Hyperspectral Frame Deblurring.

作者信息

Geng Mengyue, Wang Lizhi, Zhu Lin, Zhang Wei, Xiong Ruiqin, Tian Yonghong

出版信息

IEEE Trans Pattern Anal Mach Intell. 2025 Jan;47(1):206-223. doi: 10.1109/TPAMI.2024.3465455. Epub 2024 Dec 4.

Abstract

Snapshot Mosaic Hyperspectral Cameras (SMHCs) are popular hyperspectral imaging devices for acquiring both color and motion details of scenes. However, the narrow-band spectral filters in SMHCs may negatively impact their motion perception ability, resulting in blurry SMHC frames. In this paper, we propose a hardware-software collaborative approach to address the blurring issue of SMHCs. Our approach involves integrating SMHCs with neuromorphic event cameras for efficient event-enhanced SMHC frame deblurring. To achieve spectral information recovery guided by event signals, we formulate a spectral-aware Event-based Double Integral (sEDI) model that links SMHC frames and events from a spectral perspective, providing principled model design insights. Then, we develop a Diffusion-guided Noise Awareness (DNA) training framework that utilizes diffusion models to learn noise-aware features and promote model robustness towards camera noise. Furthermore, we design an Event-enhanced Hyperspectral frame Deblurring Network (EvHDNet) based on sEDI, which is trained with DNA and features improved spatial-spectral learning and modality interaction for reliable SMHC frame deblurring. Experiments on both synthetic data and real data show that the proposed DNA + EvHDNet outperforms state-of-the-art methods on both spatial and spectral fidelity. The code and dataset will be made publicly available.

摘要

快照马赛克高光谱相机(SMHC)是用于获取场景颜色和运动细节的流行高光谱成像设备。然而,SMHC中的窄带光谱滤波器可能会对其运动感知能力产生负面影响,导致SMHC帧模糊。在本文中,我们提出了一种硬件-软件协作方法来解决SMHC的模糊问题。我们的方法包括将SMHC与神经形态事件相机集成,以实现高效的事件增强SMHC帧去模糊。为了在事件信号的引导下恢复光谱信息,我们制定了一种光谱感知的基于事件的双重积分(sEDI)模型,该模型从光谱角度将SMHC帧和事件联系起来,提供了有原则的模型设计见解。然后,我们开发了一种扩散引导的噪声感知(DNA)训练框架,该框架利用扩散模型来学习噪声感知特征,并提高模型对相机噪声的鲁棒性。此外,我们基于sEDI设计了一个事件增强的高光谱帧去模糊网络(EvHDNet),该网络使用DNA进行训练,并具有改进的空间-光谱学习和模态交互功能,以实现可靠的SMHC帧去模糊。在合成数据和真实数据上的实验表明,所提出的DNA + EvHDNet在空间和光谱保真度方面均优于现有方法。代码和数据集将公开提供。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验