Suppr超能文献

用于运动去模糊的学习框架-事件融合

Learning Frame-Event Fusion for Motion Deblurring.

作者信息

Yang Wen, Wu Jinjian, Ma Jupo, Li Leida, Dong Weisheng, Shi Guangming

出版信息

IEEE Trans Image Process. 2024 Dec 11;PP. doi: 10.1109/TIP.2024.3512362.

Abstract

Motion deblurring is a highly ill-posed problem due to the significant loss of motion information in the blurring process. Complementary informative features from auxiliary sensors such as event cameras can be explored for guiding motion deblurring. The event camera can capture rich motion information asynchronously with microsecond accuracy. In this paper, a novel frame-event fusion framework is proposed for event-driven motion deblurring (FEF-Deblur), which can sufficiently explore long-range cross-modal information interactions. Firstly, different modalities are usually complementary and also redundant. Cross-modal fusion is modeled as complementary-unique features separation-and-aggregation, avoiding the modality redundancy. Unique features and complementary features are first inferred with parallel intra-modal self-attention and inter-modal cross-attention respectively. After that, a correlation-based constraint is designed to act between unique and complementary features to facilitate their differentiation, which assists in cross-modal redundancy suppression. Additionally, spatio-temporal dependencies among neighboring inputs are crucial for motion deblurring. A recurrent cross attention is introduced to preserve inter-input attention information, in which the current spatial features and aggregated temporal features are attending to each other by establishing the long-range interaction between them. Extensive experiments on both synthetic and real-world motion deblurring datasets demonstrate our method outperforms state-of-the-art event-based and image/video-based methods. The code will be made publicly available.

摘要

由于在模糊过程中运动信息的大量丢失,运动去模糊是一个严重不适定的问题。可以探索来自辅助传感器(如事件相机)的互补信息特征来指导运动去模糊。事件相机可以以微秒级精度异步捕获丰富的运动信息。本文提出了一种用于事件驱动运动去模糊(FEF-Deblur)的新颖帧-事件融合框架,该框架可以充分探索长程跨模态信息交互。首先,不同模态通常是互补的,同时也是冗余的。跨模态融合被建模为互补-独特特征分离与聚合,避免模态冗余。独特特征和互补特征首先分别通过并行的模态内自注意力和模态间交叉注意力进行推断。之后,设计了一种基于相关性的约束,作用于独特特征和互补特征之间以促进它们的区分,这有助于跨模态冗余抑制。此外,相邻输入之间的时空依赖性对于运动去模糊至关重要。引入了循环交叉注意力来保留输入间的注意力信息,其中当前空间特征和聚合的时间特征通过建立它们之间的长程交互来相互关注。在合成和真实世界运动去模糊数据集上的大量实验表明,我们的方法优于基于事件以及基于图像/视频的现有方法。代码将公开提供。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验