Suppr超能文献

从一系列应用程序编程接口中持续学习。

Continual Learning From a Stream of APIs.

作者信息

Yang Enneng, Wang Zhenyi, Shen Li, Yin Nan, Liu Tongliang, Guo Guibing, Wang Xingwei, Tao Dacheng

出版信息

IEEE Trans Pattern Anal Mach Intell. 2024 Dec;46(12):11432-11445. doi: 10.1109/TPAMI.2024.3460871. Epub 2024 Nov 6.

Abstract

Continual learning (CL) aims to learn new tasks without forgetting previous tasks. However, existing CL methods require a large amount of raw data, which is often unavailable due to copyright considerations and privacy risks. Instead, stakeholders usually release pre-trained machine learning models as a service (MLaaS), which users can access via APIs. This paper considers two practical-yet-novel CL settings: data-efficient CL (DECL-APIs) and data-free CL (DFCL-APIs), which achieve CL from a stream of APIs with partial or no raw data. Performing CL under these two new settings faces several challenges: unavailable full raw data, unknown model parameters, heterogeneous models of arbitrary architecture and scale, and catastrophic forgetting of previous APIs. To overcome these issues, we propose a novel data-free cooperative continual distillation learning framework that distills knowledge from a stream of APIs into a CL model by generating pseudo data, just by querying APIs. Specifically, our framework includes two cooperative generators and one CL model, forming their training as an adversarial game. We first use the CL model and the current API as fixed discriminators to train generators via a derivative-free method. Generators adversarially generate hard and diverse synthetic data to maximize the response gap between the CL model and the API. Next, we train the CL model by minimizing the gap between the responses of the CL model and the black-box API on synthetic data, to transfer the API's knowledge to the CL model. Furthermore, we propose a new regularization term based on network similarity to prevent catastrophic forgetting of previous APIs. Our method performs comparably to classic CL with full raw data on the MNIST and SVHN datasets in the DFCL-APIs setting. In the DECL-APIs setting, our method achieves 0.97×, 0.75× and 0.69× performance of classic CL on the more challenging CIFAR10, CIFAR100, and MiniImageNet, respectively.

摘要

持续学习(CL)旨在学习新任务而不忘记先前的任务。然而,现有的CL方法需要大量的原始数据,由于版权考虑和隐私风险,这些数据通常无法获取。相反,利益相关者通常将预训练的机器学习模型作为一种服务(MLaaS)发布,用户可以通过应用程序编程接口(API)访问这些模型。本文考虑了两种实际但新颖的CL设置:数据高效的CL(DECL-API)和无数据的CL(DFCL-API),它们通过带有部分或无原始数据的API流来实现CL。在这两种新设置下执行CL面临几个挑战:无法获取完整的原始数据、未知的模型参数、任意架构和规模的异构模型以及对先前API的灾难性遗忘。为了克服这些问题,我们提出了一种新颖的无数据协作持续蒸馏学习框架,该框架通过仅查询API生成伪数据,将来自API流的知识蒸馏到CL模型中。具体来说,我们的框架包括两个协作生成器和一个CL模型,将它们的训练形成一个对抗博弈。我们首先使用CL模型和当前API作为固定判别器,通过一种无导数方法训练生成器。生成器对抗性地生成困难且多样的合成数据,以最大化CL模型和API之间的响应差距。接下来,我们通过最小化CL模型和黑盒API在合成数据上的响应之间的差距来训练CL模型,以将API的知识转移到CL模型中。此外,我们提出了一种基于网络相似性的新正则化项,以防止对先前API的灾难性遗忘。在DFCL-API设置中,我们的方法在MNIST和SVHN数据集上的表现与使用完整原始数据的经典CL相当。在DECL-API设置中,我们的方法在更具挑战性的CIFAR10,CIFAR100和MiniImageNet上分别达到了经典CL性能的0.97倍、0.75倍和0.69倍。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验