Suppr超能文献

自我网络:通过持续自我建模实现终身学习。

Self-Net: Lifelong Learning via Continual Self-Modeling.

作者信息

Mandivarapu Jaya Krishna, Camp Blake, Estrada Rolando

机构信息

Department of Computer Science, Georgia State University, Atlanta, GA, United States.

出版信息

Front Artif Intell. 2020 Apr 9;3:19. doi: 10.3389/frai.2020.00019. eCollection 2020.

Abstract

Learning a set of tasks over time, also known as continual learning (CL), is one of the most challenging problems in artificial intelligence. While recent approaches achieve some degree of CL in deep neural networks, they either (1) store a new network (or an equivalent number of parameters) for each new task, (2) store training data from previous tasks, or (3) restrict the network's ability to learn new tasks. To address these issues, we propose a novel framework, Self-Net, that uses an autoencoder to learn a set of low-dimensional representations of the weights learned for different tasks. We demonstrate that these low-dimensional vectors can then be used to generate high-fidelity recollections of the original weights. Self-Net can incorporate new tasks over time with little retraining, minimal loss in performance for older tasks, and without storing prior training data. We show that our technique achieves over 10X storage compression in a continual fashion, and that it outperforms state-of-the-art approaches on numerous datasets, including continual versions of MNIST, CIFAR10, CIFAR100, Atari, and task-incremental CORe50. To the best of our knowledge, we are the first to use autoencoders to sequentially encode sets of network weights to enable continual learning.

摘要

随着时间的推移学习一组任务,也称为持续学习(CL),是人工智能中最具挑战性的问题之一。虽然最近的方法在深度神经网络中实现了一定程度的持续学习,但它们要么(1)为每个新任务存储一个新网络(或等效数量的参数),(2)存储来自先前任务的训练数据,要么(3)限制网络学习新任务的能力。为了解决这些问题,我们提出了一种新颖的框架Self-Net,它使用自动编码器来学习为不同任务学习的权重的一组低维表示。我们证明,这些低维向量随后可用于生成原始权重的高保真回忆。Self-Net可以随着时间的推移合并新任务,只需很少的重新训练,对旧任务的性能损失最小,并且无需存储先前的训练数据。我们表明,我们的技术以持续的方式实现了超过10倍的存储压缩,并且在众多数据集上优于现有方法,包括MNIST、CIFAR10、CIFAR100、Atari的持续版本以及任务增量式CORe50。据我们所知,我们是第一个使用自动编码器对网络权重集进行顺序编码以实现持续学习的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61ba/7861283/aec496bfff22/frai-03-00019-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验