Suppr超能文献

基于强化学习和神经模拟的闭环深部脑刺激

Closed-Loop Deep Brain Stimulation With Reinforcement Learning and Neural Simulation.

作者信息

Cho Chia-Hung, Huang Pin-Jui, Chen Meng-Chao, Lin Chii-Wann

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2024;32:3615-3624. doi: 10.1109/TNSRE.2024.3465243. Epub 2024 Sep 27.

Abstract

Deep Brain Stimulation (DBS) is effective for movement disorders, particularly Parkinson's disease (PD). However, a closed-loop DBS system using reinforcement learning (RL) for automatic parameter tuning, offering enhanced energy efficiency and the effect of thalamus restoration, is yet to be developed for clinical and commercial applications. In this research, we instantiate a basal ganglia-thalamic (BGT) model and design it as an interactive environment suitable for RL models. Four finely tuned RL agents based on different frameworks, namely Soft Actor-Critic (SAC), Twin Delayed Deep Deterministic Policy Gradient (TD3), Proximal Policy Optimization (PPO), and Advantage Actor-Critic (A2C), are established for further comparison. Within the implemented RL architectures, the optimized TD3 demonstrates a significant 67% reduction in average power dissipation when compared to the open-loop system while preserving the normal response of the simulated BGT circuitry. As a result, our method mitigates thalamic error responses under pathological conditions and prevents overstimulation. In summary, this study introduces a novel approach to implementing an adaptive parameter-tuning closed-loop DBS system. Leveraging the advantages of TD3, our proposed approach holds significant promise for advancing the integration of RL applications into DBS systems, ultimately optimizing therapeutic effects in future clinical trials.

摘要

深部脑刺激(DBS)对运动障碍有效,尤其是帕金森病(PD)。然而,一种使用强化学习(RL)进行自动参数调整的闭环DBS系统,可提高能量效率并具有丘脑恢复效果,尚未开发用于临床和商业应用。在本研究中,我们实例化了一个基底神经节 - 丘脑(BGT)模型,并将其设计为适合RL模型的交互式环境。基于不同框架建立了四个经过精细调整的RL智能体,即软演员 - 评论家(SAC)、双延迟深度确定性策略梯度(TD3)、近端策略优化(PPO)和优势演员 - 评论家(A2C),以进行进一步比较。在实现的RL架构中,与开环系统相比,优化后的TD3平均功耗显著降低了67%,同时保留了模拟BGT电路的正常响应。结果,我们的方法减轻了病理条件下的丘脑错误反应并防止过度刺激。总之,本研究介绍了一种实现自适应参数调整闭环DBS系统的新方法。利用TD3的优势,我们提出的方法在推进RL应用与DBS系统的整合方面具有重大前景,最终在未来临床试验中优化治疗效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验