Suppr超能文献

S2P匹配:基于自监督补丁的匹配,使用Transformer进行胶囊内镜图像拼接。

S2P-Matching: Self-Supervised Patch-Based Matching Using Transformer for Capsule Endoscopic Images Stitching.

作者信息

Lu Feng, Zhou Dao, Chen Haoyang, Liu Shuai, Ling Xianliang, Zhu Lei, Gong Tingting, Sheng Bin, Liao Xiaofei, Jin Hai, Li Ping, Feng David Dagan

出版信息

IEEE Trans Biomed Eng. 2025 Feb;72(2):540-551. doi: 10.1109/TBME.2024.3462502. Epub 2025 Jan 21.

Abstract

The Magnetically Controlled Capsule Endoscopy (MCCE) has a limited shooting range, resulting in capturing numerous fragmented images and an inability to precisely locate and examine the region of interest (ROI) as traditional endoscopy can. Addressing this issue, image stitching around the ROI can be employed to aid in the diagnosis of gastrointestinal (GI) tract conditions. However, MCCE images possess unique characteristics, such as weak texture, close-up shooting, and large angle rotation, presenting challenges to current image-matching methods. In this context, a method named S2P-Matching is proposed for self-supervised patch-based matching in MCCE image stitching. The method involves augmenting the raw data by simulating the capsule endoscopic camera's behavior around the GI tract's ROI. Subsequently, an improved contrast learning encoder is utilized to extract local features, represented as deep feature descriptors. This encoder comprises two branches that extract distinct scale features, which are combined over the channel without manual labeling. The data-driven descriptors are then input into a Transformer model to obtain patch-level matches by learning the globally consented matching priors in the pseudo-ground-truth match pairs. Finally, the patch-level matching is refined and filtered to the pixel-level. The experimental results on real-world MCCE images demonstrate that S2P-Matching provides enhanced accuracy in addressing challenging issues in the GI tract environment with image parallax. The performance improvement can reach up to 203 and 55.8% in terms of NCM (Number of Correct Matches) and SR (Success Rate), respectively. This approach is expected to facilitate the wide adoption of MCCE-based gastrointestinal screening.

摘要

磁控胶囊内镜(MCCE)的拍摄范围有限,导致采集到大量碎片化图像,且无法像传统内镜那样精确地定位和检查感兴趣区域(ROI)。为了解决这个问题,可以采用围绕ROI进行图像拼接的方法来辅助胃肠道(GI)疾病的诊断。然而,MCCE图像具有独特的特征,如纹理较弱、近距离拍摄和大角度旋转,这给当前的图像匹配方法带来了挑战。在此背景下,提出了一种名为S2P-Matching的方法,用于MCCE图像拼接中的基于自监督补丁的匹配。该方法通过模拟胶囊内镜摄像头在胃肠道ROI周围的行为来增强原始数据。随后,利用改进的对比学习编码器提取局部特征,以深度特征描述符表示。该编码器由两个分支组成,分别提取不同尺度的特征,在通道维度上进行组合,无需人工标注。然后将数据驱动的描述符输入到Transformer模型中,通过学习伪真值匹配对中的全局一致匹配先验来获得补丁级别的匹配。最后,将补丁级别的匹配细化并过滤到像素级别。在真实世界的MCCE图像上的实验结果表明,S2P-Matching在解决具有图像视差的胃肠道环境中的挑战性问题时提供了更高的准确性。在正确匹配数(NCM)和成功率(SR)方面,性能提升分别可达203%和55.8%。该方法有望促进基于MCCE的胃肠道筛查的广泛应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验