Suppr超能文献

与越南脑卒中患者 90 天死亡率相关的因素:前瞻性研究结果与可解释机器学习的比较,多中心研究。

Factors associated with 90-day mortality in Vietnamese stroke patients: Prospective findings compared with explainable machine learning, multicenter study.

机构信息

Faculty of Stroke and Cerebrovascular Disease, University of Medicine and Pharmacy, Vietnam National University, Ho Chi Minh City, Vietnam.

Stroke Center, Bach Mai Hospital, Hanoi, Vietnam.

出版信息

PLoS One. 2024 Sep 20;19(9):e0310522. doi: 10.1371/journal.pone.0310522. eCollection 2024.

Abstract

The prevalence and predictors of mortality following an ischemic stroke or intracerebral hemorrhage have not been well established among patients in Vietnam. 2885 consecutive diagnosed patients with ischemic stroke and intracerebral hemorrhage at ten stroke centres across Vietnam were involved in this prospective study. Posthoc analyses were performed in 2209 subjects (age was 65.4 ± 13.7 years, with 61.4% being male) to explore the clinical characteristics and prognostic factors associated with 90-day mortality following treatment. An explainable machine learning model using extreme gradient boosting and SHapley Additive exPlanations revealed the correlation between original clinical research and advanced machine learning methods in stroke care. In the 90 days following treatment, the mortality rate for ischemic stroke was 8.2%, while for intracerebral hemorrhage, it was higher at 20.5%. Atrial fibrillation was an elevated risk of 90-day mortality in the ischemic stroke patient (OR 3.09; 95% CI 1.90-5.02, p<0.001). Among patients with intracerebral hemorrhage, there was no statistical significance in those with hypertension compared to their counterparts without hypertension (OR 0.65, 95% CI 0.41-1.03, p > 0.05). The baseline NIHSS score was a significant predictor of 90-day mortality in both patient groups. The machine learning model can predict a 0.91 accuracy prediction of death rate after 90 days. Age and NIHSS score were in the top high risks with other features, such as consciousness, heart rate, and white blood cells. Stroke severity, as measured by the NIHSS, was identified as a predictor of mortality at discharge and the 90-day mark in both patient groups.

摘要

在越南的患者中,缺血性卒中和脑出血后的死亡率及其预测因素尚未得到很好的确定。本前瞻性研究纳入了越南 10 个卒中中心的 2885 例连续诊断为缺血性卒中和脑出血的患者。对 2209 例患者(年龄为 65.4±13.7 岁,61.4%为男性)进行了事后分析,以探讨与治疗后 90 天死亡率相关的临床特征和预后因素。使用极端梯度提升和 SHapley 加法解释的可解释机器学习模型揭示了原始临床研究与卒中治疗中先进机器学习方法之间的相关性。在治疗后 90 天内,缺血性卒中的死亡率为 8.2%,而脑出血的死亡率更高,为 20.5%。房颤是缺血性卒中患者 90 天死亡率升高的一个危险因素(OR 3.09;95%CI 1.90-5.02,p<0.001)。在脑出血患者中,与无高血压的患者相比,高血压患者的 90 天死亡率没有统计学意义(OR 0.65,95%CI 0.41-1.03,p>0.05)。基线 NIHSS 评分是两组患者 90 天死亡率的显著预测因素。机器学习模型可以预测 90 天后死亡率的准确率为 0.91。年龄和 NIHSS 评分与其他特征(如意识、心率和白细胞计数)一起处于高风险状态。NIHSS 测量的卒中严重程度被确定为两组患者出院时和 90 天死亡率的预测因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfcf/11414902/fae05bb9a8e5/pone.0310522.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验