Bukowy Tomasz, Brown Matthew L, Popelier Paul L A
Department of Chemistry, University of Manchester, Manchester M13 9PL, Great Britain.
J Phys Chem A. 2024 Oct 3;128(39):8551-8560. doi: 10.1021/acs.jpca.4c04117. Epub 2024 Sep 20.
FFLUX is a next-generation, machine-learnt force field built on three cornerstones: quantum chemical topology, Gaussian process regression, and (high-rank) multipolar electrostatics. It is capable of performing molecular dynamics with near-quantum accuracy at a lower computational cost than standard molecular dynamics. Previous work with FFLUX was concerned with water and formamide. In this study, we go one step further and challenge FFLUX to model urea, a larger and more flexible system. In result, we have trained urea models at the B3LYP/aug-cc-pVTZ level of theory, with a mean absolute error of 0.4 kJ mol and a maximum prediction error below 7.0 kJ mol. To test their performance in molecular dynamics simulations, two sets of FFLUX geometry optimizations were carried out: 5 dimers corresponding to energy minima and 75 random dimers. The 5 dimers were recovered with a root-mean-square deviation below 0.1 Å with respect to their references. Out of the 75 random dimers, 68% converged to the qualitatively same dimer as those obtained at the level. Furthermore, we have ranked the 5 FFLUX-optimized dimers in the order of their relative FFLUX single-point energies and compared them with the method. The energy ranking fully agreed but for one crossover between two successive minima. Finally, we have demonstrated the importance of geometry-dependent (.., flexible) multipole moments, showing that the lack of multipole moment flexibility can lead to average errors in the total intermolecular electrostatic energy of more than 2 orders of magnitude.
FFLUX是一种基于三个基石构建的下一代机器学习力场:量子化学拓扑、高斯过程回归和(高阶)多极静电学。它能够以比标准分子动力学更低的计算成本进行接近量子精度的分子动力学模拟。之前关于FFLUX的工作主要涉及水和甲酰胺。在本研究中,我们更进一步,挑战FFLUX对尿素进行建模,尿素是一个更大且更灵活的体系。结果,我们在B3LYP/aug-cc-pVTZ理论水平上训练了尿素模型,平均绝对误差为0.4 kJ/mol,最大预测误差低于7.0 kJ/mol。为了测试它们在分子动力学模拟中的性能,进行了两组FFLUX几何优化:5个对应能量最小值的二聚体和75个随机二聚体。这5个二聚体相对于其参考结构的均方根偏差低于0.1 Å。在75个随机二聚体中,68%收敛到与在该水平获得的二聚体在定性上相同的二聚体。此外,我们根据它们的相对FFLUX单点能量对5个经FFLUX优化的二聚体进行了排序,并将它们与该方法进行了比较。能量排序完全一致,但有两个连续最小值之间的一个交叉情况除外。最后,我们证明了几何相关(即灵活)多极矩的重要性,表明缺乏多极矩灵活性会导致分子间总静电能的平均误差超过2个数量级。