Wang Weijin, Song Song, Jiao Ning
State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Road 38, Beijing 100191, China.
State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences. Shanghai 200032, China.
Acc Chem Res. 2024 Nov 5;57(21):3161-3181. doi: 10.1021/acs.accounts.4c00501. Epub 2024 Sep 20.
ConspectusLate-stage halogenation, targeting specific positions in complex substrates, has gained significant attention due to its potential for diversifying and functionalizing complex molecules such as natural products and pharmaceutical intermediates. Utilizing readily available halogenating reagents, such as hydrogen halides (HX), N-halosuccinimides (NXS), and dichloroethane (DCE) reagents for late-stage halogenation shows great promise for expanding the toolbox of synthetic chemists. However, the reactivity of haleniums (X, X = Cl, Br, I) can be significantly hindered by the presence of various functional groups such as hydroxyl, amine, amide, or carboxylic acid groups. The developed methods of late-stage halogenation often rely on specialized activating reagents and conditions. Recently, our group (among others) has put great efforts into addressing these challenges and unlocking the potential of these readily available HX, NXS, and DCE reagents in complex molecule halogenation. Developing new methodologies, catalyst systems, and reaction conditions further enhanced their utility, enabling the efficient and selective halogenation of intricate substrates.With the long-term goal of achieving selective halogenation of complex molecules, we summarize herein three complementary research topics in our group: (1) Efficient oxidative halogenations: Taking inspiration from naturally occurring enzyme-catalyzed oxidative halogenation reactions, we focused on developing cost-effective oxidative halogenation reactions. We found the combination of dimethyl sulfoxide (DMSO) and HX (X = Cl, Br, I) efficient for the oxidative halogenation of aromatic compounds and alkenes. Additionally, we developed electrochemical oxidative halogenation using DCE as a practical chlorinating reagent for chlorination of (hetero)arenes. (2) Halenium reagent activation: Direct electrophilic halogenation using halenium reagents is a reliable method for obtaining organohalides. However, compared to highly reactive reagents, the common and readily available NXS and dihalodimethylhydantoin (DXDMH) demonstrate relatively lower reactivity. Therefore, we focused on developing oxygen-centered Lewis base catalysts such as DMSO, 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) and nitromethane to activate NXS or DXDMH, enabling selective halogenation of bioactive substrates. (3) Halogenation of inert substrates: Some substrates, such as electron-poor arenes and pyridines, are inert toward electrophilic functionalization reactions. We devised several strategies to enhance the reactivity of these molecules. These strategies, characterized by mild reaction conditions, the ready availability and stability of catalysts and reagents, and excellent tolerance for various functional groups, have emerged as versatile protocols for the late-stage aromatic halogenation of drugs, natural products, and peptides. By harnessing the versatility and selectivity of these catalysts and methodologies, synthetic chemists can unlock new possibilities in the synthesis of halogenated compounds, paving the way for the development of novel functional materials and biologically active molecules.
综述
晚期卤化反应,即针对复杂底物中的特定位置进行卤化,因其能够使天然产物和药物中间体等复杂分子多样化并引入官能团的潜力而备受关注。利用易于获得的卤化试剂,如卤化氢(HX)、N-卤代琥珀酰亚胺(NXS)和二氯乙烷(DCE)试剂进行晚期卤化反应,为扩展合成化学家的工具库带来了巨大希望。然而,卤鎓离子(X,X = Cl、Br、I)的反应活性会受到各种官能团(如羟基、胺基、酰胺基或羧基)的显著阻碍。已开发的晚期卤化方法通常依赖于专门的活化试剂和条件。最近,我们小组(以及其他一些小组)付出了巨大努力来应对这些挑战,并挖掘这些易于获得的HX、NXS和DCE试剂在复杂分子卤化中的潜力。开发新的方法、催化剂体系和反应条件进一步提高了它们的实用性,实现了对复杂底物的高效和选择性卤化。
为了实现复杂分子的选择性卤化这一长期目标,我们在此总结了我们小组的三个互补研究主题:(1)高效氧化卤化反应:从天然存在的酶催化氧化卤化反应中获得灵感,我们专注于开发具有成本效益的氧化卤化反应。我们发现二甲基亚砜(DMSO)和HX(X = Cl、Br、I)的组合对于芳香族化合物和烯烃的氧化卤化反应是有效的。此外,我们开发了以DCE作为实用氯化试剂的电化学氧化卤化反应,用于(杂)芳烃的氯化。(2)卤鎓试剂活化:使用卤鎓试剂进行直接亲电卤化是获得有机卤化物的可靠方法。然而,与高活性试剂相比,常见且易于获得的NXS和二卤代二甲基乙内酰脲(DXDMH)表现出相对较低的反应活性。因此,我们专注于开发以氧为中心的路易斯碱催化剂,如DMSO、2,2,6,6-四甲基哌啶-1-氧基(TEMPO)和硝基甲烷,以活化NXS或DXDMH,实现对生物活性底物的选择性卤化。(3)惰性底物的卤化:一些底物,如缺电子芳烃和吡啶,对亲电官能化反应呈惰性。我们设计了几种策略来提高这些分子的反应活性。这些策略具有反应条件温和、催化剂和试剂易于获得且稳定以及对各种官能团具有出色耐受性的特点,已成为药物、天然产物和肽的晚期芳香卤化的通用方案。通过利用这些催化剂和方法的多功能性和选择性,合成化学家可以挖掘卤化化合物合成中的新可能性,为新型功能材料和生物活性分子的开发铺平道路。