Department of Microbiology, University of Tennessee, Knoxville, United States.
Department of Microbiology, University of Tennessee, Knoxville, United States.
Syst Appl Microbiol. 2024 Nov;47(6):126544. doi: 10.1016/j.syapm.2024.126544. Epub 2024 Aug 28.
Arctic soil microbial communities may shift with increasing temperatures and water availability from climate change. We examined temperature and volumetric liquid water content (VWC) in the upper 80 cm of permafrost-affected soil over 2 years (2018-2019) at the Bayelva monitoring station, Ny Ålesund, Svalbard. We show VWC increases with depth, whereas in situ temperature is more stable vertically, ranging from -5°C to 5 °C seasonally. Prokaryotic metagenome-assembled genomes (MAGs) were obtained at 2-4 cm vertical resolution collected while frozen in April 2018 and at 10 cm vertical resolution collected while thawed in September 2019. The most abundant MAGs were Acidobacteriota, Actinomycetota, and Chloroflexota. Actinomycetota and Chloroflexota increase with depth, while Acidobacteriota classes Thermoanaerobaculia Gp7-AA8, Blastocatellia UBA7656, and Vicinamibacteria Vicinamibacterales are found above 6 cm, below 6 cm, and below 20 cm, respectively. All MAGs have diverse carbon-degrading genes, and Actinomycetota and Chloroflexota have autotrophic genes. Genes encoding β -glucosidase, N-acetyl-β-D-glucosaminidase, and xylosidase increase with depth, indicating a greater potential for organic matter degradation with higher VWC. Acidobacteriota dominate the top 6 cm with their classes segregating by depth, whereas Actinomycetota and Chloroflexota dominate below ∼6 cm. This suggests that Acidobacteriota classes adapt to lower VWC at the surface, while Actinomycetota and Chloroflexota persist below 6 cm with higher VWC. This indicates that VWC may be as important as temperature in microbial climate change responses in Arctic mineral soils. Here we describe MAG-based Seqcode type species in the Acidobacteriota, Onstottus arcticum, Onstottus frigus, and Gilichinskyi gelida and in the Actinobacteriota, Mayfieldus profundus.
随着气候变化,北极土壤微生物群落可能会随着温度和水分可用性的增加而发生变化。我们在 2018 年至 2019 年期间,在斯瓦尔巴群岛新奥尔松的拜尔瓦监测站,对受永冻层影响的土壤上层 80 厘米内的温度和体积液态水含量(VWC)进行了 2 年的检测。结果表明,VWC 随深度增加而增加,而原位温度在垂直方向上更为稳定,季节性范围在-5°C 至 5°C 之间。在 2018 年 4 月采集的冷冻样本和 2019 年 9 月采集的解冻样本中,以 2-4 厘米的垂直分辨率获得了原核微生物宏基因组组装基因组(MAG)。丰度最高的 MAG 分别为 Acidobacteriota、Actinomycetota 和 Chloroflexota。Actinomycetota 和 Chloroflexota 随深度增加而增加,而 Acidobacteriota 类 Thermoanaerobaculia Gp7-AA8、Blastocatellia UBA7656 和 Vicinamibacteria Vicinamibacterales 则分别存在于 6 厘米以上、6 厘米以下和 20 厘米以下。所有 MAG 都具有丰富的碳降解基因,Actinomycetota 和 Chloroflexota 具有自养基因。β-葡萄糖苷酶、N-乙酰-β-D-氨基葡萄糖苷酶和木糖苷酶编码基因随深度增加而增加,表明随着 VWC 的增加,有机物质的降解潜力更大。Acidobacteriota 类在表层以其分层的深度为特征,占据主导地位,而 Actinomycetota 和 Chloroflexota 类则在 6 厘米以下占主导地位。这表明,Acidobacteriota 类适应表面较低的 VWC,而 Actinomycetota 和 Chloroflexota 类则在 6 厘米以下,VWC 较高时仍能存活。这表明,VWC 在北极矿物土壤微生物对气候变化的响应中可能与温度一样重要。在这里,我们描述了 Acidobacteriota 中的基于 MAG 的 Seqcode 模式种,包括 Onstottus arcticum、Onstottus frigus 和 Gilichinskyi gelida,以及 Actinobacteriota 中的 Mayfieldus profundus。