Computational Biology Unit, Department of Informatics, University of Bergen,Thormøhlensgt 55 N-5008, Bergen, Norway.
Department of Biological Sciences, University of Bergen, Thormøhlensgt 53 N-5020, Bergen, Norway.
FEMS Microbiol Ecol. 2020 May 1;96(5). doi: 10.1093/femsec/fiaa057.
Permafrost underlies a large portion of the land in the Northern Hemisphere. It is proposed to be an extreme habitat and home for cold-adaptive microbial communities. Upon thaw permafrost is predicted to exacerbate increasing global temperature trend, where awakening microbes decompose millennia old carbon stocks. Yet our knowledge on composition, functional potential and variance of permafrost microbiome remains limited. In this study, we conducted a deep comparative metagenomic analysis through a 2 m permafrost core from Svalbard, Norway to determine key permafrost microbiome in this climate sensitive island ecosystem. To do so, we developed comparative metagenomics methods on metagenomic-assembled genomes (MAG). We found that community composition in Svalbard soil horizons shifted markedly with depth: the dominant phylum switched from Acidobacteria and Proteobacteria in top soils (active layer) to Actinobacteria, Bacteroidetes, Chloroflexi and Proteobacteria in permafrost layers. Key metabolic potential propagated through permafrost depths revealed aerobic respiration and soil organic matter decomposition as key metabolic traits. We also found that Svalbard MAGs were enriched in genes involved in regulation of ammonium, sulfur and phosphate. Here, we provide a new perspective on how permafrost microbiome is shaped to acquire resources in competitive and limited resource conditions of deep Svalbard soils.
多年冻土覆盖了北半球大部分陆地。多年冻土被认为是一个极端的生境,是适应寒冷的微生物群落的家园。预计多年冻土的解冻会加剧全球温度上升的趋势,从而唤醒微生物分解数千年的碳储量。然而,我们对多年冻土微生物组的组成、功能潜力和变异性的了解仍然有限。在这项研究中,我们对来自挪威斯瓦尔巴群岛的 2 米深的多年冻土核心进行了深入的比较宏基因组分析,以确定这个对气候敏感的岛屿生态系统中的关键多年冻土微生物组。为此,我们开发了基于宏基因组组装基因组(MAG)的比较宏基因组学方法。我们发现,斯瓦尔巴群岛土壤层的群落组成随深度明显变化:优势门从表层土壤(活动层)中的酸杆菌门和变形菌门转变为多年冻土层中的放线菌门、拟杆菌门、绿弯菌门和变形菌门。通过多年冻土深度传播的关键代谢潜力揭示了有氧呼吸和土壤有机质分解是关键的代谢特征。我们还发现,斯瓦尔巴群岛 MAGs 富含与铵、硫和磷调节相关的基因。在这里,我们提供了一个新的视角,即多年冻土微生物组如何在斯瓦尔巴群岛深层土壤的竞争和有限资源条件下获取资源。