School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand.
School of Psychological Sciences, Macquarie University, New South Wales, 2109, Australia.
Neural Netw. 2024 Dec;180:106731. doi: 10.1016/j.neunet.2024.106731. Epub 2024 Sep 11.
Estimating intracranial current sources underlying the electromagnetic signals observed from extracranial sensors is a perennial challenge in non-invasive neuroimaging. Established solutions to this inverse problem treat time samples independently without considering the temporal dynamics of event-related brain processes. This paper describes current source estimation from simultaneously recorded magneto- and electro-encephalography (MEEG) using a recurrent neural network (RNN) that learns sequential relationships from neural data. The RNN was trained in two phases: (1) pre-training and (2) transfer learning with L1 regularization applied to the source estimation layer. Performance of using scaled labels derived from MEEG, magnetoencephalography (MEG), or electroencephalography (EEG) were compared, as were results from volumetric source space with free dipole orientation and surface source space with fixed dipole orientation. Exact low-resolution electromagnetic tomography (eLORETA) and mixed-norm L1/L2 (MxNE) source estimation methods were also applied to these data for comparison with the RNN method. The RNN approach outperformed other methods in terms of output signal-to-noise ratio, correlation and mean-squared error metrics evaluated against reference event-related field (ERF) and event-related potential (ERP) waveforms. Using MEEG labels with fixed-orientation surface sources produced the most consistent estimates. To estimate sources of ERF and ERP waveforms, the RNN generates temporal dynamics within its internal computational units, driven by sequential structure in neural data used as training labels. It thus provides a data-driven model of computational transformations from psychophysiological events into corresponding event-related neural signals, which is unique among MEEG source reconstruction solutions.
从颅外传感器观察到的电磁信号中估计颅内电流源是无创神经成像中的一个长期挑战。为解决这个逆问题,已有方法通常是独立处理时间样本,而不考虑与事件相关的大脑过程的时间动态。本文描述了一种使用递归神经网络 (RNN) 从同时记录的磁和脑电图 (MEG) 中进行电流源估计的方法,该方法从神经数据中学习序列关系。RNN 分两个阶段进行训练:(1)预训练和(2)迁移学习,在源估计层应用 L1 正则化。比较了使用源自 MEG、脑磁图 (MEG) 或脑电图 (EEG) 的缩放标签的性能,以及具有自由偶极子取向的容积源空间和具有固定偶极子取向的表面源空间的结果。还将精确低分辨率电磁层析成像 (eLORETA) 和混合范数 L1/L2 (MxNE) 源估计方法应用于这些数据,与 RNN 方法进行比较。在输出信噪比、相关性和均方误差等指标方面,RNN 方法优于其他方法,这些指标是针对参考事件相关场 (ERF) 和事件相关电位 (ERP) 波形进行评估的。使用具有固定取向表面源的 MEEG 标签可产生最一致的估计结果。为了估计 ERF 和 ERP 波形的源,RNN 在其内部计算单元中生成时间动态,这些动态由用作训练标签的神经数据中的序列结构驱动。因此,它提供了一种从心理生理事件到相应事件相关神经信号的计算转换的基于数据的模型,这是 MEG 源重建解决方案中独有的。