Suppr超能文献

利用加速梯度方法对 M/EEG 逆问题进行混合范数估计。

Mixed-norm estimates for the M/EEG inverse problem using accelerated gradient methods.

机构信息

Parietal Project Team, INRIA Saclay-Ile de France, France.

出版信息

Phys Med Biol. 2012 Apr 7;57(7):1937-61. doi: 10.1088/0031-9155/57/7/1937. Epub 2012 Mar 16.

Abstract

Magneto- and electroencephalography (M/EEG) measure the electromagnetic fields produced by the neural electrical currents. Given a conductor model for the head, and the distribution of source currents in the brain, Maxwell's equations allow one to compute the ensuing M/EEG signals. Given the actual M/EEG measurements and the solution of this forward problem, one can localize, in space and in time, the brain regions that have produced the recorded data. However, due to the physics of the problem, the limited number of sensors compared to the number of possible source locations, and measurement noise, this inverse problem is ill-posed. Consequently, additional constraints are needed. Classical inverse solvers, often called minimum norm estimates (MNE), promote source estimates with a small ℓ₂ norm. Here, we consider a more general class of priors based on mixed norms. Such norms have the ability to structure the prior in order to incorporate some additional assumptions about the sources. We refer to such solvers as mixed-norm estimates (MxNE). In the context of M/EEG, MxNE can promote spatially focal sources with smooth temporal estimates with a two-level ℓ₁/ℓ₂ mixed-norm, while a three-level mixed-norm can be used to promote spatially non-overlapping sources between different experimental conditions. In order to efficiently solve the optimization problems of MxNE, we introduce fast first-order iterative schemes that for the ℓ₁/ℓ₂ norm give solutions in a few seconds making such a prior as convenient as the simple MNE. Furthermore, thanks to the convexity of the optimization problem, we can provide optimality conditions that guarantee global convergence. The utility of the methods is demonstrated both with simulations and experimental MEG data.

摘要

磁和脑电图(M/EEG)测量由神经电流产生的电磁场。给定头部的导体模型,以及大脑中源电流的分布,麦克斯韦方程组允许计算随之而来的 M/EEG 信号。给定实际的 M/EEG 测量值和这个正向问题的解,可以在空间和时间上定位产生记录数据的大脑区域。然而,由于问题的物理性质,与可能的源位置相比,传感器的数量有限,以及测量噪声,这个逆问题是不适定的。因此,需要额外的约束。经典的逆求解器,通常称为最小范数估计(MNE),促进具有小 ℓ₂范数的源估计。在这里,我们考虑基于混合范数的更一般的先验类别。这样的范数具有构造先验的能力,以便将一些关于源的额外假设纳入其中。我们将这样的求解器称为混合范数估计(MxNE)。在 M/EEG 的背景下,MxNE 可以促进具有平滑时间估计的空间聚焦源,使用两级 ℓ₁/ℓ₂混合范数,而三级混合范数可用于促进不同实验条件下空间上不重叠的源。为了有效地解决 MxNE 的优化问题,我们引入了快速的一阶迭代方案,对于 ℓ₁/ℓ₂ 范数,在几秒钟内给出解,使得这样的先验像简单的 MNE 一样方便。此外,由于优化问题的凸性,我们可以提供最优性条件,保证全局收敛。该方法的实用性在模拟和实验 MEG 数据中都得到了验证。

相似文献

1
Mixed-norm estimates for the M/EEG inverse problem using accelerated gradient methods.
Phys Med Biol. 2012 Apr 7;57(7):1937-61. doi: 10.1088/0031-9155/57/7/1937. Epub 2012 Mar 16.
2
Time-frequency mixed-norm estimates: sparse M/EEG imaging with non-stationary source activations.
Neuroimage. 2013 Apr 15;70:410-22. doi: 10.1016/j.neuroimage.2012.12.051. Epub 2013 Jan 4.
3
The Iterative Reweighted Mixed-Norm Estimate for Spatio-Temporal MEG/EEG Source Reconstruction.
IEEE Trans Med Imaging. 2016 Oct;35(10):2218-2228. doi: 10.1109/TMI.2016.2553445. Epub 2016 Apr 13.
4
Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates.
Neuroimage. 2006 May 15;31(1):160-71. doi: 10.1016/j.neuroimage.2005.11.054. Epub 2006 Mar 6.
5
Spatially sparse source cluster modeling by compressive neuromagnetic tomography.
Neuroimage. 2010 Oct 15;53(1):146-60. doi: 10.1016/j.neuroimage.2010.05.013. Epub 2010 May 19.
6
A distributed spatio-temporal EEG/MEG inverse solver.
Neuroimage. 2009 Feb 1;44(3):932-46. doi: 10.1016/j.neuroimage.2008.05.063. Epub 2008 Jun 14.
7
Bayesian Algorithm Based Localization of EEG Recorded Electromagnetic Brain Activity.
Curr Med Imaging Rev. 2019;15(2):184-193. doi: 10.2174/1573405613666170629112918.
8
Sparse current source estimation for MEG using loose orientation constraints.
Hum Brain Mapp. 2013 Sep;34(9):2190-201. doi: 10.1002/hbm.22057. Epub 2012 Mar 22.
9
EEG/MEG source imaging using fMRI informed time-variant constraints.
Hum Brain Mapp. 2018 Apr;39(4):1700-1711. doi: 10.1002/hbm.23945. Epub 2018 Jan 2.
10
EEG minimum-norm estimation compared with MEG dipole fitting in the localization of somatosensory sources at S1.
Clin Neurophysiol. 2004 Mar;115(3):534-42. doi: 10.1016/j.clinph.2003.10.034.

引用本文的文献

2
XDL-ESI: Electrophysiological Sources Imaging via explainable deep learning framework with validation on simultaneous EEG and iEEG.
Neuroimage. 2024 Oct 1;299:120802. doi: 10.1016/j.neuroimage.2024.120802. Epub 2024 Aug 22.
4
Multi-Modal Electrophysiological Source Imaging With Attention Neural Networks Based on Deep Fusion of EEG and MEG.
IEEE Trans Neural Syst Rehabil Eng. 2024;32:2492-2502. doi: 10.1109/TNSRE.2024.3424669. Epub 2024 Jul 11.
5
EEG dynamic source imaging using a regularized optimization with spatio-temporal constraints.
Med Biol Eng Comput. 2024 Oct;62(10):3073-3088. doi: 10.1007/s11517-024-03125-9. Epub 2024 May 21.
8
An F-ratio-based method for estimating the number of active sources in MEG.
Front Hum Neurosci. 2023 Sep 14;17:1235192. doi: 10.3389/fnhum.2023.1235192. eCollection 2023.
9
Laminar specificity of the auditory perceptual awareness negativity: A biophysical modeling study.
PLoS Comput Biol. 2023 Jun 29;19(6):e1011003. doi: 10.1371/journal.pcbi.1011003. eCollection 2023 Jun.

本文引用的文献

2
Tracking cortical activity from M/EEG using graph cuts with spatiotemporal constraints.
Neuroimage. 2011 Feb 1;54(3):1930-41. doi: 10.1016/j.neuroimage.2010.09.087. Epub 2010 Oct 7.
3
OpenMEEG: opensource software for quasistatic bioelectromagnetics.
Biomed Eng Online. 2010 Sep 6;9:45. doi: 10.1186/1475-925X-9-45.
4
EEG source imaging with spatio-temporal tomographic nonnegative independent component analysis.
Hum Brain Mapp. 2009 Jun;30(6):1898-910. doi: 10.1002/hbm.20784.
5
A proximal iteration for deconvolving Poisson noisy images using sparse representations.
IEEE Trans Image Process. 2009 Feb;18(2):310-21. doi: 10.1109/TIP.2008.2008223. Epub 2009 Jan 6.
6
A distributed spatio-temporal EEG/MEG inverse solver.
Neuroimage. 2009 Feb 1;44(3):932-46. doi: 10.1016/j.neuroimage.2008.05.063. Epub 2008 Jun 14.
7
A unified Bayesian framework for MEG/EEG source imaging.
Neuroimage. 2009 Feb 1;44(3):947-66. doi: 10.1016/j.neuroimage.2008.02.059. Epub 2008 Mar 18.
8
Combining sparsity and rotational invariance in EEG/MEG source reconstruction.
Neuroimage. 2008 Aug 15;42(2):726-38. doi: 10.1016/j.neuroimage.2008.04.246. Epub 2008 May 3.
10
Multiple sparse priors for the M/EEG inverse problem.
Neuroimage. 2008 Feb 1;39(3):1104-20. doi: 10.1016/j.neuroimage.2007.09.048. Epub 2007 Oct 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验