Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA.
Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Kavli NDI, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Prog Neurobiol. 2024 Oct;241:102661. doi: 10.1016/j.pneurobio.2024.102661. Epub 2024 Sep 18.
Listening in complex sound environments requires rapid segregation of different sound sources, e.g., having a conversation with multiple speakers or other environmental sounds. Efficient processing requires fast encoding of inputs to adapt to target sounds and identify relevant information from past experiences. This adaptation process represents an early phase of implicit learning of the sound statistics to form auditory memory. The auditory cortex (ACtx) plays a crucial role in this implicit learning process, but the underlying circuits are unknown. In awake mice, we recorded neuronal responses in different ACtx subfields using in vivo 2-photon imaging of excitatory and inhibitory (parvalbumin; PV) neurons. We used a paradigm adapted from human studies that induced rapid implicit learning from passively presented complex sounds and imaged A1 Layer 4 (L4), A1 L2/3, and A2 L2/3. In this paradigm, a frozen spectro-temporally complex 'Target' sound randomly re-occurred within a stream of other random complex sounds. All ACtx subregions contained distinct groups of cells specifically responsive to complex acoustic sequences, indicating that even thalamocortical input layers (A1 L4) respond to complex sounds. Subgroups of excitatory and inhibitory cells in all subfields showed decreased responses for re-occurring Target sounds, indicating that ACtx is highly involved in the early implicit learning phase. At the population level, activity was more decorrelated to Target sounds independent of the duration of frozen token, subregions, and cell type. These findings suggest that ACtx and its input layers contribute to the early phase of auditory memory for complex sounds, suggesting a parallel strategy across ACtx areas and between excitatory and inhibitory neurons.
在复杂的声音环境中倾听需要快速分离不同的声源,例如与多个说话者或其他环境声音进行对话。有效的处理需要快速对输入进行编码,以适应目标声音并从过去的经验中识别相关信息。这个适应过程代表了对声音统计数据进行隐性学习以形成听觉记忆的早期阶段。听觉皮层 (ACtx) 在这个隐性学习过程中起着至关重要的作用,但潜在的回路尚不清楚。在清醒的小鼠中,我们使用体内双光子成像记录了兴奋性和抑制性(parvalbumin;PV)神经元在不同的 ACtx 亚区的神经元反应。我们使用了一种从人类研究中改编的范式,该范式从被动呈现的复杂声音中诱导快速的隐性学习,并对 A1 层 4(L4)、A1 L2/3 和 A2 L2/3 进行成像。在这个范式中,冻结的时频谱复杂的“目标”声音随机出现在其他随机复杂声音流中。所有 ACtx 亚区都包含特定的细胞群,这些细胞群对复杂的声序列有反应,这表明即使是丘脑皮质输入层(A1 L4)也对复杂声音有反应。所有亚区的兴奋性和抑制性细胞亚群对重复出现的目标声音的反应都有所下降,这表明 ACtx 高度参与了隐性学习的早期阶段。在群体水平上,活动与目标声音的相关性独立于冻结令牌的持续时间、亚区和细胞类型而降低。这些发现表明,ACtx 及其输入层为复杂声音的听觉记忆的早期阶段做出了贡献,这表明在 ACtx 区域之间以及在兴奋性和抑制性神经元之间存在平行策略。