Department of Neurobiology, the Alexander Silberman Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Sciences, Hebrew University, Jerusalem 91904, Israel.
Department of Neurobiology, the Alexander Silberman Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Sciences, Hebrew University, Jerusalem 91904, Israel
J Neurosci. 2022 Jun 8;42(23):4629-4651. doi: 10.1523/JNEUROSCI.0988-21.2022. Epub 2022 Apr 27.
Stimulus-specific adaptation (SSA) is the reduction in responses to frequent stimuli (standards) that does not generalize to rare stimuli (deviants). We investigated the contribution of inhibition in auditory cortex to SSA using two-photon targeted cell-attached recordings and optogenetic manipulations in male mice. We characterized the responses of parvalbumin (PV)-, somatostatin (SST)-, and vasoactive intestinal polypeptide (VIP)-expressing interneurons of layer 2/3, and of serotonin receptor 5HT3a-expressing interneurons of layer 1. All populations showed early-onset SSA. Unexpectedly, the PV, SST, and VIP populations exhibited a substantial late component of evoked activity, often stronger for standard than for deviant stimuli. Optogenetic suppression of PV neurons facilitated pyramidal neuron responses substantially more (approximately ×10) for deviants than for standards. VIP suppression decreased responses of putative PV neurons, specifically for standard but not for deviant stimuli. Thus, the inhibitory network does not generate cortical SSA, but powerfully controls its expression by differentially affecting the responses to deviants and to standards. Stimulus-specific adaptation (SSA) reflects the growing complexity of auditory processing along the ascending auditory system. In the presence of SSA, neuronal responses depend not only on the stimulus itself but also on the history of stimulation. Strong SSA in the fast, ascending auditory pathway first occurs in cortex. Here we studied the role of the cortical inhibitory network in shaping SSA, showing that while cortical inhibition does not generate SSA, it powerfully controls its expression. We deduce that the cortical network contributes in crucial ways to the properties of SSA.
刺激特异性适应(SSA)是指对频繁刺激(标准)的反应减少,而不会泛化到稀有刺激(变体)。我们使用双光子靶向细胞贴附记录和雄性小鼠的光遗传学操作,研究了听觉皮层中的抑制作用对 SSA 的贡献。我们对表达钙调蛋白结合蛋白 2(PV)、生长抑素(SST)和血管活性肠肽(VIP)的 2/3 层中间神经元,以及表达 5-羟色胺受体 5HT3a 的 1 层中间神经元的反应进行了表征。所有群体均表现出早期 SSA。出乎意料的是,PV、SST 和 VIP 群体表现出明显的诱发活动晚期成分,对于标准刺激通常比变体刺激更强。光遗传学抑制 PV 神经元使锥体神经元的反应显著增强(约×10),对变体刺激的反应强于标准刺激。VIP 抑制降低了假定的 PV 神经元的反应,特别是对标准刺激,但不对变体刺激。因此,抑制性网络不会产生皮层 SSA,而是通过对变体和标准刺激的反应产生差异,从而有力地控制其表达。刺激特异性适应(SSA)反映了听觉处理沿着上升听觉系统的不断复杂化。在存在 SSA 的情况下,神经元的反应不仅取决于刺激本身,还取决于刺激的历史。在快速上升的听觉通路中,SSA 首先出现在皮层中。在这里,我们研究了皮层抑制性网络在塑造 SSA 中的作用,表明虽然皮层抑制不会产生 SSA,但它会强烈控制其表达。我们推断,皮层网络以关键方式为 SSA 的特性做出贡献。