Zheng Neil S, Keloth Vipina K, You Kisung, Kats Daniel, Li Darrick K, Deshpande Ohm, Sachar Hamita, Xu Hua, Laine Loren, Shung Dennis L
Section of Digestive Diseases, Department of Medicine, Yale School of Medicine, New Haven, Connecticut; Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.
Department of Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, Connecticut; Department of Medicine, Yale School of Medicine, New Haven, Connecticut.
Gastroenterology. 2025 Jan;168(1):111-120.e4. doi: 10.1053/j.gastro.2024.09.014. Epub 2024 Sep 18.
BACKGROUND & AIMS: Early identification and accurate characterization of overt gastrointestinal bleeding (GIB) enables opportunities to optimize patient management and ensures appropriately risk-adjusted coding for claims-based quality measures and reimbursement. Recent advancements in generative artificial intelligence, particularly large language models (LLMs), create opportunities to support accurate identification of clinical conditions. In this study, we present the first LLM-based pipeline for identification of overt GIB in the electronic health record (EHR). We demonstrate 2 clinically relevant applications: the automated detection of recurrent bleeding and appropriate reimbursement coding for patients with GIB.
Development of the LLM-based pipeline was performed on 17,712 nursing notes from 1108 patients who were hospitalized with acute GIB and underwent endoscopy in the hospital from 2014 to 2023. The pipeline was used to train an EHR-based machine learning model for detection of recurrent bleeding on 546 patients presenting to 2 hospitals and externally validated on 562 patients presenting to 4 different hospitals. The pipeline was used to develop an algorithm for appropriate reimbursement coding on 7956 patients who underwent endoscopy in the hospital from 2019 to 2023.
The LLM-based pipeline accurately detected melena (positive predictive value, 0.972; sensitivity, 0.900), hematochezia (positive predictive value, 0.900; sensitivity, 0.908), and hematemesis (positive predictive value, 0.859; sensitivity, 0.932). The EHR-based machine learning model identified recurrent bleeding with area under the curve of 0.986, sensitivity of 98.4%, and specificity of 97.5%. The reimbursement coding algorithm resulted in an average per-patient reimbursement increase of $1299 to $3247 with a total difference of $697,460 to $1,743,649.
An LLM-based pipeline can robustly detect overt GIB in the EHR with clinically relevant applications in detection of recurrent bleeding and appropriate reimbursement coding.
早期识别和准确表征显性胃肠道出血(GIB)可为优化患者管理提供机会,并确保基于索赔的质量指标和报销的风险调整编码适当。生成式人工智能的最新进展,特别是大语言模型(LLMs),为支持临床状况的准确识别创造了机会。在本研究中,我们展示了首个基于大语言模型的流程,用于在电子健康记录(EHR)中识别显性GIB。我们展示了两个临床相关应用:复发性出血的自动检测以及GIB患者的适当报销编码。
基于大语言模型的流程是在2014年至2023年期间因急性GIB住院并在医院接受内镜检查的1108例患者的17712份护理记录上开发的。该流程用于训练基于EHR的机器学习模型,以检测到两家医院就诊的546例患者的复发性出血,并在到四家不同医院就诊的562例患者上进行外部验证。该流程用于为2019年至2023年在医院接受内镜检查的7956例患者开发适当报销编码算法。
基于大语言模型的流程准确检测出黑便(阳性预测值,0.972;敏感性,0.900)、便血(阳性预测值,0.900;敏感性,0.908)和呕血(阳性预测值,0.859;敏感性,0.932)。基于EHR的机器学习模型识别复发性出血的曲线下面积为0.986,敏感性为98.4%,特异性为97.5%。报销编码算法使每位患者的平均报销增加了1299美元至3247美元,总差异为697460美元至1743649美元。
基于大语言模型的流程能够在EHR中可靠地检测显性GIB,并在复发性出血检测和适当报销编码方面具有临床相关应用。