Suppr超能文献

利用人工智能提升急性胃肠道出血的治疗水平。

Advancing care for acute gastrointestinal bleeding using artificial intelligence.

机构信息

Yale School of Medicine, New Haven, Connecticut, USA.

出版信息

J Gastroenterol Hepatol. 2021 Feb;36(2):273-278. doi: 10.1111/jgh.15372.

Abstract

The future of gastrointestinal bleeding will include the integration of machine learning algorithms to enhance clinician risk assessment and decision making. Machine learning algorithms have shown promise in outperforming existing clinical risk scores for both upper and lower gastrointestinal bleeding but have not been validated in any prospective clinical trials. The adoption of electronic health records provides an exciting opportunity to deploy risk prediction tools in real time and also to expand the data available to train predictive models. Machine learning algorithms can be used to identify patients with acute gastrointestinal bleeding using data extracted from the electronic health record. This can lead to an automated process to find patients with symptoms of acute gastrointestinal bleeding so that risk prediction tools can be then triggered to consistently provide decision support to the physician. Neural network models can be used to provide continuous risk predictions for patients who are at higher risk, which can be used to guide triage of patients to appropriate levels of care. Finally, the future will likely include neural network-based analysis of endoscopic stigmata of bleeding to help guide best practices for hemostasis during the endoscopic procedure. Machine learning will enhance the delivery of care at every level for patients with acute gastrointestinal bleeding through identifying very low risk patients for outpatient management, triaging high risk patients for higher levels of care, and guiding optimal intervention during endoscopy.

摘要

胃肠道出血的未来将包括机器学习算法的整合,以增强临床医生的风险评估和决策能力。机器学习算法在对上消化道和下消化道出血的现有临床风险评分方面表现出了优异的性能,但尚未在任何前瞻性临床试验中得到验证。电子健康记录的采用为实时部署风险预测工具以及扩展可用于训练预测模型的数据提供了一个令人兴奋的机会。机器学习算法可用于使用从电子健康记录中提取的数据来识别患有急性胃肠道出血的患者。这可以导致一个自动流程来找到有急性胃肠道出血症状的患者,以便随后触发风险预测工具,为医生提供一致的决策支持。神经网络模型可用于为处于较高风险的患者提供连续的风险预测,这可用于指导将患者分诊到适当的护理水平。最后,未来可能包括基于神经网络的内镜下出血征象分析,以帮助指导内镜手术期间的最佳止血实践。机器学习将通过识别出适合门诊管理的极低风险患者、为高风险患者分诊到更高水平的护理、以及指导内镜下的最佳干预,在各个层面提高急性胃肠道出血患者的护理水平。

相似文献

1
Advancing care for acute gastrointestinal bleeding using artificial intelligence.
J Gastroenterol Hepatol. 2021 Feb;36(2):273-278. doi: 10.1111/jgh.15372.
3
Detection of Gastrointestinal Bleeding With Large Language Models to Aid Quality Improvement and Appropriate Reimbursement.
Gastroenterology. 2025 Jan;168(1):111-120.e4. doi: 10.1053/j.gastro.2024.09.014. Epub 2024 Sep 18.
4
A decision support system to facilitate management of patients with acute gastrointestinal bleeding.
Artif Intell Med. 2008 Mar;42(3):247-59. doi: 10.1016/j.artmed.2007.10.003. Epub 2007 Dec 11.
5
Clinical utility of pre-endoscopy risk scores in upper gastrointestinal bleeding.
Expert Rev Gastroenterol Hepatol. 2019 Dec;13(12):1161-1167. doi: 10.1080/17474124.2019.1698292.
7
Early identification of patients with acute gastrointestinal bleeding using natural language processing and decision rules.
J Gastroenterol Hepatol. 2021 Jun;36(6):1590-1597. doi: 10.1111/jgh.15313. Epub 2021 Jan 25.
8
Initial Assessment, Risk Stratification, and Early Management of Acute Nonvariceal Upper Gastrointestinal Hemorrhage.
Gastrointest Endosc Clin N Am. 2018 Jul;28(3):261-275. doi: 10.1016/j.giec.2018.02.001. Epub 2018 Apr 17.
9
Machine Learning to Predict Outcomes in Patients with Acute Gastrointestinal Bleeding: A Systematic Review.
Dig Dis Sci. 2019 Aug;64(8):2078-2087. doi: 10.1007/s10620-019-05645-z. Epub 2019 May 4.
10
Validation of an Electronic Health Record-Based Machine Learning Model Compared With Clinical Risk Scores for Gastrointestinal Bleeding.
Gastroenterology. 2024 Nov;167(6):1198-1212. doi: 10.1053/j.gastro.2024.06.030. Epub 2024 Jul 5.

引用本文的文献

2
Management of gastrointestinal bleed in the intensive care setting, an updated literature review.
World J Crit Care Med. 2025 Mar 9;14(1):101639. doi: 10.5492/wjccm.v14.i1.101639.
3
The Prediction and Treatment of Bleeding Esophageal Varices in the Artificial Intelligence Era: A Review.
Cureus. 2024 Mar 8;16(3):e55786. doi: 10.7759/cureus.55786. eCollection 2024 Mar.
4
A Cohort Study to Compare Effects between Ulcer- and Nonulcer-Related Nonvariceal Upper Gastrointestinal Bleeding.
Appl Bionics Biomech. 2022 Jun 10;2022:3342919. doi: 10.1155/2022/3342919. eCollection 2022.
5
Nursing Value Analysis and Risk Assessment of Acute Gastrointestinal Bleeding Using Multiagent Reinforcement Learning Algorithm.
Gastroenterol Res Pract. 2022 Jan 6;2022:7874751. doi: 10.1155/2022/7874751. eCollection 2022.

本文引用的文献

2
Early identification of patients with acute gastrointestinal bleeding using natural language processing and decision rules.
J Gastroenterol Hepatol. 2021 Jun;36(6):1590-1597. doi: 10.1111/jgh.15313. Epub 2021 Jan 25.
5
Machine Learning Prognostic Models for Gastrointestinal Bleeding Using Electronic Health Record Data.
Am J Gastroenterol. 2020 Aug;115(8):1199-1200. doi: 10.14309/ajg.0000000000000720.
6
Stratification of gastric cancer risk using a deep neural network.
JGH Open. 2019 Dec 26;4(3):466-471. doi: 10.1002/jgh3.12281. eCollection 2020 Jun.
7
Explainable Machine Learning Model for Predicting GI Bleed Mortality in the Intensive Care Unit.
Am J Gastroenterol. 2020 Oct;115(10):1657-1668. doi: 10.14309/ajg.0000000000000632.
9
Detection of colorectal adenomas with a real-time computer-aided system (ENDOANGEL): a randomised controlled study.
Lancet Gastroenterol Hepatol. 2020 Apr;5(4):352-361. doi: 10.1016/S2468-1253(19)30413-3. Epub 2020 Jan 22.
10
Effect of a deep-learning computer-aided detection system on adenoma detection during colonoscopy (CADe-DB trial): a double-blind randomised study.
Lancet Gastroenterol Hepatol. 2020 Apr;5(4):343-351. doi: 10.1016/S2468-1253(19)30411-X. Epub 2020 Jan 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验