Jiménez Diego Javier, Chaparro Dayanne, Sierra Felipe, Custer Gordon F, Feuerriegel Golo, Chuvochina Maria, Diaz-Garcia Laura, Mendes Lucas William, Ortega Santiago Yina Paola, Rubiano-Labrador Carolina, Salcedo Galan Felipe, Streit Wolfgang R, Dini-Andreote Francisco, Reyes Alejandro, Rosado Alexandre Soares
Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
Microbiomes and Bioenergy Research Group, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia; Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia.
Trends Biotechnol. 2025 Jan;43(1):162-183. doi: 10.1016/j.tibtech.2024.08.013. Epub 2024 Sep 20.
Mangroves are impacted by multiple environmental stressors, including sea level rise, erosion, and plastic pollution. Thus, mangrove soil may be an excellent source of as yet unknown plastic-transforming microorganisms. Here, we assess the impact of polyethylene terephthalate (PET) particles and seawater intrusion on the mangrove soil microbiome and report an enrichment culture experiment to artificially select PET-transforming microbial consortia. The analysis of metagenome-assembled genomes of two bacterial consortia revealed that PET catabolism can be performed by multiple taxa, of which particular species harbored putative novel PET-active hydrolases. A key member of these consortia (Mangrovimarina plasticivorans gen. nov., sp. nov.) was found to contain two genes encoding monohydroxyethyl terephthalate hydrolases. This study provides insights into the development of strategies for harnessing soil microbiomes, thereby advancing our understanding of the ecology and enzymology involved in microbial-mediated PET transformations in marine-associated systems.
红树林受到多种环境压力因素的影响,包括海平面上升、侵蚀和塑料污染。因此,红树林土壤可能是尚未被发现的塑料转化微生物的极佳来源。在此,我们评估了聚对苯二甲酸乙二酯(PET)颗粒和海水入侵对红树林土壤微生物群落的影响,并报告了一项富集培养实验,以人工筛选PET转化微生物群落。对两个细菌群落的宏基因组组装基因组的分析表明,PET分解代谢可由多个分类群进行,其中特定物种含有假定的新型PET活性水解酶。这些群落的一个关键成员(新属新种食塑料红树林海菌)被发现含有两个编码对苯二甲酸单羟乙酯水解酶的基因。本研究为开发利用土壤微生物群落的策略提供了见解,从而增进了我们对海洋相关系统中微生物介导的PET转化所涉及的生态学和酶学的理解。