Liu Xia, Wang Peipei, Liu Guolong
The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China.
Department of Oncology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.
Clin Transl Oncol. 2025 Apr;27(4):1529-1538. doi: 10.1007/s12094-024-03735-7. Epub 2024 Sep 20.
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have become the standard treatment for advanced non-small cell lung cancer (NSCLC) with EGFR mutations. However, NSCLC heterogeneity leads to differences in efficacy; thus, potential biomarkers need to be explored to predict the prognosis of patients. Recently, the prognostic importance of pre-treatment malnutrition and systemic inflammatory response in cancer patients has received increasing attention.
In this study, clinical information from 363 NSCLC patients receiving EGFR-TKI treatment at our clinical center was used for analysis.
High nutritional risk index (NRI) and systemic inflammation response index (SIRI) were significantly associated with poor overall survival (OS) and progression-free survival (PFS) in NSCLC patients (P < 0.05). Importantly, NRI and SIRI were the best combination models for predicting clinical outcomes of NSCLC patients and independent OS and PFS predictors. Moreover, a nomogram model was constructed by combining NRI/SIRI, sex, smoking history, EGFR mutation, TNM stage, and surgery treatment to visually and personally predict the 1-, 2-, 3-, 4-, and 5-year OS of patients with NSCLC. Notably, risk stratification based on the nomogram model was better than that based on the TNM stage.
NRI and SIRI were the best combination models for predicting clinical outcomes of NSCLC patients receiving EGFR-TKI treatment, which may be a novel biomarker for supplement risk stratification in NSCLC patients.
表皮生长因子受体(EGFR)酪氨酸激酶抑制剂(TKIs)已成为晚期非小细胞肺癌(NSCLC)伴EGFR突变的标准治疗方法。然而,NSCLC的异质性导致疗效存在差异;因此,需要探索潜在的生物标志物来预测患者的预后。最近,癌症患者治疗前营养不良和全身炎症反应的预后重要性受到越来越多的关注。
在本研究中,使用了在我们临床中心接受EGFR-TKI治疗的363例NSCLC患者的临床信息进行分析。
高营养风险指数(NRI)和全身炎症反应指数(SIRI)与NSCLC患者较差的总生存期(OS)和无进展生存期(PFS)显著相关(P < 0.05)。重要的是,NRI和SIRI是预测NSCLC患者临床结局的最佳组合模型,也是独立的OS和PFS预测指标。此外,通过结合NRI/SIRI、性别、吸烟史、EGFR突变、TNM分期和手术治疗构建了列线图模型,以直观且个性化地预测NSCLC患者1年、2年、3年、4年和5年的OS。值得注意的是,基于列线图模型的风险分层优于基于TNM分期的风险分层。
NRI和SIRI是预测接受EGFR-TKI治疗的NSCLC患者临床结局的最佳组合模型,可能是补充NSCLC患者风险分层的新型生物标志物。