Suppr超能文献

使用CRISPR-Cas9基因组编辑技术快速生成纯合荧光敲入人类细胞,并通过自动成像和数字PCR筛选进行验证。

Rapid generation of homozygous fluorescent knock-in human cells using CRISPR-Cas9 genome editing and validation by automated imaging and digital PCR screening.

作者信息

Callegari Andrea, Kueblbeck Moritz, Morero Natalia Rosalía, Serrano-Solano Beatriz, Ellenberg Jan

机构信息

Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.

Institute of Biophysics, Ulm University, Ulm, Germany.

出版信息

Nat Protoc. 2025 Jan;20(1):26-66. doi: 10.1038/s41596-024-01043-6. Epub 2024 Sep 20.

Abstract

We previously described a protocol for genome engineering of mammalian cultured cells with clustered regularly interspaced short palindromic repeats and associated protein 9 (CRISPR-Cas9) to generate homozygous knock-ins of fluorescent tags into endogenous genes. Here we are updating this former protocol to reflect major improvements in the workflow regarding efficiency and throughput. In brief, we have improved our method by combining high-efficiency electroporation of optimized CRISPR-Cas9 reagents, screening of single cell-derived clones by automated bright-field and fluorescence imaging, rapidly assessing the number of tagged alleles and potential off-targets using digital polymerase chain reaction (PCR) and automated data analysis. Compared with the original protocol, our current procedure (1) substantially increases the efficiency of tag integration, (2) automates the identification of clones derived from single cells with correct subcellular localization of the tagged protein and (3) provides a quantitative and high throughput assay to measure the number of on- and off-target integrations with digital PCR. The increased efficiency of the new procedure reduces the number of clones that need to be analyzed in-depth by more than tenfold and yields to more than 26% of homozygous clones in polyploid cancer cell lines in a single genome engineering round. Overall, we were able to dramatically reduce the hands-on time from 30 d to 10 d during the overall ~10 week procedure, allowing a single person to process up to five genes in parallel, assuming that validated reagents-for example, PCR primers, digital PCR assays and western blot antibodies-are available.

摘要

我们之前描述了一种利用成簇规律间隔短回文重复序列及其相关蛋白9(CRISPR-Cas9)对哺乳动物培养细胞进行基因组工程改造的方案,以将荧光标签纯合敲入内源性基因。在此,我们更新这一先前方案,以体现工作流程在效率和通量方面的重大改进。简而言之,我们通过以下方式改进了方法:将优化的CRISPR-Cas9试剂高效电穿孔、通过自动明场和荧光成像筛选单细胞衍生克隆、使用数字聚合酶链反应(PCR)和自动数据分析快速评估标记等位基因的数量和潜在脱靶情况。与原始方案相比,我们当前的流程:(1)大幅提高了标签整合效率;(2)自动识别来自单细胞且标记蛋白具有正确亚细胞定位的克隆;(3)提供了一种定量且高通量的检测方法,以通过数字PCR测量靶向和脱靶整合的数量。新流程提高的效率使需要深入分析的克隆数量减少了十倍以上,并在单轮基因组工程改造中,在多倍体癌细胞系中产生了超过26%的纯合克隆。总体而言,在整个约10周的流程中,我们能够将实际操作时间从30天大幅缩短至10天,假设已有经过验证的试剂(例如PCR引物、数字PCR检测方法和蛋白质免疫印迹抗体),则一个人可以同时处理多达五个基因。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验