Suppr超能文献

速效胰岛素治疗开始后未达到糖化血红蛋白目标的2型糖尿病患者的预测:基于临床试验数据的机器学习框架应用

Prediction of People With Type 2 Diabetes Not Achieving HbA1c Target After Initiation of Fast-Acting Insulin Therapy: Using Machine Learning Framework on Clinical Trial Data.

作者信息

Stoltenberg Carsten Wridt, Hangaard Stine, Hejlesen Ole, Kronborg Thomas, Vestergaard Peter, Jensen Morten Hasselstrøm

机构信息

Aalborg University, Gistrup, Denmark.

Steno Diabetes Center North Denmark, Aalborg, Denmark.

出版信息

J Diabetes Sci Technol. 2024 Sep 20:19322968241280096. doi: 10.1177/19322968241280096.

Abstract

BACKGROUND AND AIMS

Glycemic control is crucial for people with type 2 diabetes. However, only about half achieve the advocated HbA1c target of ≤7%. Identifying those who will probably struggle to reach this target may be valuable as they require additional support. Thus, the aim of this study was to develop a model to predict people with type 2 diabetes not achieving HbA1c target after initiating fast-acting insulin.

METHODS

Data from a randomized controlled trial (NCT01819129) of participants with type 2 diabetes initiating fast-acting insulin were used. Data included demographics, clinical laboratory values, self-monitored blood glucose (SMBG), health-related quality of life (SF-36), and body measurements. A logistic regression was developed to predict HbA1c target nonachievers. A potential of 196 features was input for a forward feature selection. To assess the performance, a 20-repeated stratified 5-fold cross-validation with area under the receiver operating characteristics curve (AUROC) was used.

RESULTS

Out of the 467 included participants, 98 (21%) did not achieve HbA1c target of ≤7%. The forward selection identified 7 features: baseline HbA1c (%), mean postprandial SMBG at all meals 3 consecutive days before baseline (mmol/L), sex, no ketones in urine, baseline albumin (g/dL), baseline low-density lipoprotein cholesterol (mmol/L), and traces of protein in urine. The model had an AUROC of 0.745 [95% CI = 0.734, 0.756].

CONCLUSIONS

The model was able to predict those who did not achieve HbA1c target with promising performance, potentially enabling early identification of people with type 2 diabetes who require additional support to reach glycemic control.

摘要

背景与目的

血糖控制对于2型糖尿病患者至关重要。然而,只有约一半的患者能达到建议的糖化血红蛋白(HbA1c)目标值≤7%。识别那些可能难以达到该目标的患者可能很有价值,因为他们需要额外的支持。因此,本研究的目的是建立一个模型,以预测2型糖尿病患者在开始使用速效胰岛素后无法达到HbA1c目标的情况。

方法

使用一项针对开始使用速效胰岛素的2型糖尿病参与者的随机对照试验(NCT01819129)的数据。数据包括人口统计学信息、临床实验室值、自我监测血糖(SMBG)、健康相关生活质量(SF - 36)和身体测量数据。开发了一个逻辑回归模型来预测未达到HbA1c目标的患者。将196个潜在特征输入进行前向特征选择。为评估模型性能,采用了20次重复的分层5折交叉验证,并计算受试者工作特征曲线下面积(AUROC)。

结果

在纳入的467名参与者中,98名(21%)未达到HbA1c目标值≤7%。前向选择确定了7个特征:基线HbA1c(%)、基线前连续3天所有餐次的餐后平均SMBG(mmol/L)、性别、尿中无酮体、基线白蛋白(g/dL)、基线低密度脂蛋白胆固醇(mmol/L)和尿中微量蛋白。该模型的AUROC为0.745 [95%置信区间 = 0.734, 0.756]。

结论

该模型能够以良好的性能预测未达到HbA1c目标的患者,有可能早期识别出需要额外支持以实现血糖控制的2型糖尿病患者。

相似文献

5
10
Beyond HbA1c.超越糖化血红蛋白。
J Diabetes. 2017 Dec;9(12):1052-1053. doi: 10.1111/1753-0407.12590. Epub 2017 Sep 13.

本文引用的文献

7
Predicting Response to Bolus Insulin Therapy in Patients With Type 2 Diabetes.预测 2 型糖尿病患者对胰岛素冲击治疗的反应。
J Diabetes Sci Technol. 2023 Nov;17(6):1573-1579. doi: 10.1177/19322968221098057. Epub 2022 May 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验