Suppr超能文献

预测 2 型糖尿病患者对胰岛素冲击治疗的反应。

Predicting Response to Bolus Insulin Therapy in Patients With Type 2 Diabetes.

机构信息

Eli Lilly and Company, Indianapolis, IN, USA.

Optum Labs, Minneapolis, MN, USA.

出版信息

J Diabetes Sci Technol. 2023 Nov;17(6):1573-1579. doi: 10.1177/19322968221098057. Epub 2022 May 20.

Abstract

BACKGROUND

The aim of this study was to develop a predictive model to classify people with type 2 diabetes (T2D) into expected levels of success upon bolus insulin initiation.

METHODS

Machine learning methods were applied to a large nationally representative insurance claims database from the United States (dNHI database; data from 2007 to 2017). We trained boosted decision tree ensembles (XGBoost) to assign people into Class 0 (never meeting HbA1c goal), Class 1 (meeting but not maintaining HbA1c goal), or Class 2 (meeting and maintaining HbA1c goal) based on the demographic and clinical data available prior to initiating bolus insulin. The primary objective of the study was to develop a model capable of determining at an individual level, whether people with T2D are likely to achieve and maintain HbA1c goals. HbA1c goal was defined at <8.0% or reduction of baseline HbA1c by >1.0%.

RESULTS

Of 15 331 people with T2D (mean age, 53.0 years; SD, 8.7), 7800 (50.9%) people met HbA1c goal but failed to maintain that goal (Class 1), 4510 (29.4%) never attained this goal (Class 0), and 3021 (19.7%) people met and maintained this goal (Class 2). Overall, the model's receiver operating characteristic (ROC) was 0.79 with greater performance on predicting those in Class 2 (ROC = 0.92) than those in Classes 0 and 1 (ROC = 0.71 and 0.62, respectively). The model achieved high area under the precision-recall curves for the individual classes (Class 0, 0.46; Class 1, 0.58; Class 2, 0.71).

CONCLUSIONS

Predictive modeling using routine health care data reasonably accurately classified patients initiating bolus insulin who would achieve and maintain HbA1c goals, but less so for differentiation between patients who never met and who did not maintain goals. Prior HbA1c was a major contributing parameter for the predictions.

摘要

背景

本研究旨在开发一种预测模型,以将 2 型糖尿病(T2D)患者分为起始胰岛素冲击治疗后预期达标水平。

方法

应用机器学习方法对来自美国的大型全国性保险理赔数据库(dNHI 数据库;数据来自 2007 年至 2017 年)进行分析。我们利用提升决策树集合(XGBoost)对人群进行分类,0 类(从未达到 HbA1c 目标)、1 类(达到但未维持 HbA1c 目标)或 2 类(达到并维持 HbA1c 目标),分类依据是起始胰岛素冲击治疗前的人口统计学和临床数据。研究的主要目的是开发一种能够确定个体患者是否可能达到和维持 HbA1c 目标的模型。HbA1c 目标定义为<8.0%或较基线 HbA1c 降低>1.0%。

结果

在 15331 例 T2D 患者中(平均年龄 53.0 岁,标准差 8.7),7800 例(50.9%)患者达到 HbA1c 目标但未能维持(1 类),4510 例(29.4%)从未达到此目标(0 类),3021 例(19.7%)患者达到并维持此目标(2 类)。总体而言,模型的受试者工作特征曲线(ROC)为 0.79,对预测 2 类患者(ROC=0.92)的性能优于预测 0 类和 1 类患者(ROC=0.71 和 0.62)。模型在预测个体患者类别时,精准度-召回曲线下面积较高(0 类,0.46;1 类,0.58;2 类,0.71)。

结论

利用常规医疗保健数据进行预测建模可以合理准确地对起始胰岛素冲击治疗的患者进行分类,以评估其是否能达到和维持 HbA1c 目标,但对区分从未达标和未能维持目标的患者的预测效果较差。既往 HbA1c 是预测的主要影响因素。

相似文献

1
Predicting Response to Bolus Insulin Therapy in Patients With Type 2 Diabetes.预测 2 型糖尿病患者对胰岛素冲击治疗的反应。
J Diabetes Sci Technol. 2023 Nov;17(6):1573-1579. doi: 10.1177/19322968221098057. Epub 2022 May 20.
4
Beyond HbA1c.超越糖化血红蛋白。
J Diabetes. 2017 Dec;9(12):1052-1053. doi: 10.1111/1753-0407.12590. Epub 2017 Sep 13.

本文引用的文献

1
9. Pharmacologic Approaches to Glycemic Treatment: .9. 血糖治疗的药物学方法: 。
Diabetes Care. 2021 Jan;44(Suppl 1):S111-S124. doi: 10.2337/dc21-S009.
8
Strategies for implementing effective mealtime insulin therapy in type 2 diabetes.2型糖尿病患者实施有效餐时胰岛素治疗的策略
Curr Med Res Opin. 2018 Jun;34(6):1153-1162. doi: 10.1080/03007995.2018.1440200. Epub 2018 Mar 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验