Nie Jihu, Yang Nailin, Sun Shumin, Wang Li, Pei Zifan, Wu Jie, Yu Qiao, Han Zhihui, Chen Youdong, Cheng Liang
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China.
Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, 999078, Macau SAR, China.
Angew Chem Int Ed Engl. 2025 Jan 21;64(4):e202416426. doi: 10.1002/anie.202416426. Epub 2024 Nov 7.
Pyroptosis, an inflammatory modality of programmed cell death associated with the immune response, can be initiated by bioactive ions and reactive oxygen species (ROS). However, bioactive ion-induced pyroptosis lacks specificity, and further exploration of other ions that can induce pyroptosis in cancer cells is needed. Sonocatalytic therapy (SCT) holds promise due to its exceptional penetration depth; however, the rapid recombination of electron-hole (e-h) pairs and the complex tumor microenvironment (TME) impede its broader application. Herein, we discovered that antimony (Sb)-based nanomaterials induced pyroptosis in cancer cells. Therefore, Schottky heterojunctions containing Sb component (SbSe@Pt) were effectively designed and constructed via in situ growth of platinum (Pt) nanoparticles (NPs) on SbSe semiconductor with narrow band gaps, which were utilized as US-heightened pyroptosis initiators to induce highly effective pyroptosis in cancer cells to boost SCT-immunotherapy. Under US irradiation, excited electrons were transferred from SbSe nanorods (NRs) to the co-catalyst Pt via Schottky junctions, and band bending effectively prevented electron backflow and achieved efficient ROS generation. Moreover, the pores oxidized and depleted the overexpressed GSH in the TME, potentially amplifying ROS generation. The biological effects of the SbSe@Pt nanoheterojunction itself combined with the sonocatalytic amplification of oxidative stress significantly induced Caspase-1/GSDMD-dependent pyroptosis in cancer cells. Therefore, SCT treatment with SbSe@Pt not only effectively restrained tumor proliferation but also induced potent immune memory responses and suppressed tumor recurrence. Furthermore, the integration of this innovative strategy with immune checkpoint blockade (ICB) treatment elicited a systemic immune response, effectively augmenting therapeutic effects and impeding the growth of abscopal tumors. Overall, this study provides further opportunities to explore pyroptosis-mediated SCT-immunotherapy.
细胞焦亡是一种与免疫反应相关的程序性细胞死亡的炎症形式,可由生物活性离子和活性氧(ROS)引发。然而,生物活性离子诱导的细胞焦亡缺乏特异性,需要进一步探索其他能诱导癌细胞发生细胞焦亡的离子。声催化疗法(SCT)因其出色的穿透深度而具有应用前景;然而,电子-空穴(e-h)对的快速复合以及复杂的肿瘤微环境(TME)阻碍了其更广泛的应用。在此,我们发现基于锑(Sb)的纳米材料可诱导癌细胞发生细胞焦亡。因此,通过在具有窄带隙的SbSe半导体上原位生长铂(Pt)纳米颗粒(NPs),有效设计并构建了含Sb组分的肖特基异质结(SbSe@Pt),其被用作超声增强的细胞焦亡引发剂,以在癌细胞中诱导高效的细胞焦亡,从而促进SCT免疫疗法。在超声照射下,激发电子通过肖特基结从SbSe纳米棒(NRs)转移到助催化剂Pt,能带弯曲有效地阻止了电子回流并实现了高效的ROS生成。此外,孔隙氧化并消耗了TME中过表达的谷胱甘肽(GSH),可能会放大ROS的生成。SbSe@Pt纳米异质结本身的生物学效应与氧化应激的声催化放大相结合,显著诱导了癌细胞中半胱天冬酶-1/ Gasdermin D依赖性细胞焦亡。因此,用SbSe@Pt进行SCT治疗不仅有效地抑制了肿瘤增殖,还诱导了强大的免疫记忆反应并抑制了肿瘤复发。此外,这种创新策略与免疫检查点阻断(ICB)治疗相结合引发了全身免疫反应,有效增强了治疗效果并抑制了远隔转移瘤的生长。总体而言,本研究为探索细胞焦亡介导的SCT免疫疗法提供了更多机会。