Nguyen H, Bassey E N, Foley E E, Kitchaev D A, Giovine R, Clément R J
Materials Department, University of California, Santa Barbara, CA 93106, USA; Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA.
Materials Department, University of California, Santa Barbara, CA 93106, USA; Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA.
J Magn Reson. 2024 Nov;368:107772. doi: 10.1016/j.jmr.2024.107772. Epub 2024 Sep 14.
Operando electron spin probes, namely magnetometry and electron paramagnetic resonance (EPR), provide real-time insights into the electrochemical processes occurring in battery materials and devices. In this work, we describe the design criteria and outline the development of operando magnetometry and EPR electrochemical cells. Notably, we show that a clamping mechanism, or springs, are needed to achieve sufficient compression of the battery stack and an electrochemical performance on par with that of a standard Swagelok-type cell. The tandem use of operando EPR and magnetometry allows us to identify five distinct and reversible redox processes taking place on charge and discharge of the intercalation-type LiNiMnO Li-ion cathode. While redox processes in conversion-type electrodes are notoriously difficult to investigate using standard characterization methods (e.g. X-ray based) and/or post mortem analysis, due to the formation of poorly crystalline and metastable reaction intermediates and products during cycling, we show that operando magnetometry provides unique insight into the kinetics and reversibility of Fe nanoparticle formation in the NaFeF electrode for Na-based batteries. Step increases in the cell magnetization upon extended cycling indicate the build-up of Fe nanoparticles in the system, hinting at only partially reversible charge-discharge processes. The broad applicability of the tools developed herein to a range of electrode chemistries and structures, from intercalation to conversion electrodes, and from crystalline to amorphous systems, makes them particularly promising for the development of electrochemical energy storage technologies and beyond.
原位电子自旋探针,即磁力测量法和电子顺磁共振(EPR),能实时洞察电池材料和器件中发生的电化学过程。在这项工作中,我们描述了设计标准并概述了原位磁力测量法和EPR电化学电池的开发。值得注意的是,我们表明需要一种夹紧机构或弹簧来实现对电池组的充分压缩,并获得与标准Swagelok型电池相当的电化学性能。原位EPR和磁力测量法的串联使用使我们能够识别在插层型LiNiMnO锂离子阴极充电和放电过程中发生的五个不同且可逆的氧化还原过程。虽然转换型电极中的氧化还原过程使用标准表征方法(如基于X射线的方法)和/或事后分析很难研究,因为在循环过程中会形成结晶性差和亚稳态的反应中间体和产物,但我们表明原位磁力测量法能独特地洞察钠基电池NaFeF电极中Fe纳米颗粒形成的动力学和可逆性。长时间循环后电池磁化强度的逐步增加表明系统中Fe纳米颗粒的积累,这暗示了充放电过程仅部分可逆。本文开发的工具对一系列电极化学和结构具有广泛适用性,从插层电极到转换电极,从晶体系统到非晶系统,这使其在电化学储能技术及其他领域的发展中特别有前景。