Huang Longjian, Zhang Wenzhao, Liu Mingxuan, Gong Yuanxun, Tang Qianli, Wang Kaihua, Liao Xianjiu, Zhang Kai, Wei Jihua
Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530001, China; West Guangxi Key Laboratory for Prevention and Treatment of High-incidence Diseases, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China.
Guangxi Key Laboratory for Preclinical and Translational Research on Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China.
Bioelectrochemistry. 2025 Feb;161:108815. doi: 10.1016/j.bioelechem.2024.108815. Epub 2024 Sep 11.
We present an innovative biosensor designed for the precise identification of Escherichia coli (E.coli), a predominant pathogen responsible for gastrointestinal infections. E.coli is prevalent in environments characterized by substandard water quality and can lead to severe diarrhea, especially in hospital settings. The device employs entropy-driven reactions to synthesize copious amounts of double-stranded DNA (dsDNA), which, upon binding with crRNA, triggers the CRISPR/Cas12a system's cleavage mechanism. This process results in the separation of a ferrocene (Fc)-tagged DNA strand from the electrode, enhancing the electrochemical signal for E.coli's rapid and accurate detection. Our tests confirm the biosensor's ability to quantify E.coli across a dynamic range from 100 to 10 million CFU/mL, achieving a detection threshold of just over 5 CFU/mL. The development of this electrochemical biosensor highlights its exceptional selectivity, high sensitivity, and user-friendly interface for E.coli detection. It stands as a significant step forward in pathogen detection technology, promising new directions for identifying various bacterial infections through the CRISPR/Cas mechanism.
我们展示了一种创新型生物传感器,其设计目的是精确识别大肠杆菌,这是一种导致胃肠道感染的主要病原体。大肠杆菌在水质不达标的环境中很常见,并且会导致严重腹泻,尤其是在医院环境中。该设备利用熵驱动反应来合成大量双链DNA(dsDNA),dsDNA与crRNA结合后,会触发CRISPR/Cas12a系统的切割机制。这一过程导致一条带有二茂铁(Fc)标记的DNA链从电极上分离,增强了电化学信号,从而实现对大肠杆菌的快速准确检测。我们的测试证实,该生物传感器能够在100至1000万CFU/mL的动态范围内对大肠杆菌进行定量,检测阈值略高于5 CFU/mL。这种电化学生物传感器的开发突出了其在大肠杆菌检测方面的卓越选择性、高灵敏度和用户友好界面。它是病原体检测技术向前迈出的重要一步,有望通过CRISPR/Cas机制为识别各种细菌感染开辟新方向。