Liang Hao, Li Danliang, Jia Shiyu, Zhang Xuebing, Bai Qinqin, Wang Ziyi, Cai Yujiao, Liu Jian, Chen Lili
Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.
Zhuzhou Hetang District Center for Disease Control and Prevention, Zhuzhou, Hunan, China.
Mikrochim Acta. 2025 May 28;192(6):385. doi: 10.1007/s00604-025-07244-4.
Bacterial contamination poses significant threats to public health through food safety issues, creating a critical need for rapid and sensitive bacterial detection platforms. Herein, we developed a novel label-free fluorescent detection system leveraging target-triggered hybridization chain reaction (HCR) amplification, using Escherichia coli (E. coli) as a proof of concept. We engineered a hairpin-structured capture probe integrating an E. coli-specific aptamer with an HCR trigger sequence, achieving fluorescence amplification through three synergistic mechanisms: (1) HCR-driven DNA duplex assembly; (2) enhanced SYBR Green I (SG-I, a cost-effective non-labeled dye) intercalation into HCR-generated DNA duplexes; and (3) target-selective fluorescence modulation via MnO nanosheets that quench background fluorescence through preferential adsorption of single-stranded DNA (ssDNA)-bound SG-I over duplex DNA-intercalated dye, exploiting the differential binding affinity of MnO for ssDNA versus double-stranded DNA. This strategy enabled a fluorescence sensor with high sensitivity (detection limit: 17 CFU/mL), excellent specificity, and broad dynamic range (5.0 × 10 ~ 5.0 × 10 CFU/mL), demonstrating robust performance in complex food matrices through successful E. coli detection in spiked milk and lettuce samples with recoveries of 98.81 to 104.26%, thereby underscoring the method's reliability and practical utility for on-site food safety monitoring in real-world scenarios.
细菌污染通过食品安全问题对公众健康构成重大威胁,因此迫切需要快速灵敏的细菌检测平台。在此,我们开发了一种新型的无标记荧光检测系统,利用目标触发的杂交链式反应(HCR)扩增,以大肠杆菌(E. coli)作为概念验证。我们设计了一种发夹结构的捕获探针,将大肠杆菌特异性适配体与HCR触发序列整合在一起,通过三种协同机制实现荧光放大:(1)HCR驱动的DNA双链组装;(2)增强的SYBR Green I(SG-I,一种经济高效的非标记染料)插入HCR产生的DNA双链中;(3)通过MnO纳米片进行目标选择性荧光调制,MnO纳米片通过优先吸附与单链DNA(ssDNA)结合的SG-I而不是双链DNA插入染料来淬灭背景荧光,利用MnO对ssDNA和双链DNA的不同结合亲和力。该策略实现了一种具有高灵敏度(检测限:17 CFU/mL)、出色特异性和宽动态范围(5.0×10~5.0×10 CFU/mL)的荧光传感器,通过在加标的牛奶和生菜样品中成功检测大肠杆菌,回收率为98.81%至104.26%,证明了该方法在复杂食品基质中的强大性能,从而强调了该方法在实际场景中现场食品安全监测的可靠性和实用性。