Suppr超能文献

目标和空间辨别能力使弱监督局部特征更优。

Object and spatial discrimination makes weakly supervised local feature better.

机构信息

School of Computer and Electronic Information, Guangxi University, Nanning, China.

School of Computer and Electronic Information, Guangxi University, Nanning, China; Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning, China.

出版信息

Neural Netw. 2024 Dec;180:106697. doi: 10.1016/j.neunet.2024.106697. Epub 2024 Sep 12.

Abstract

Local feature extraction plays a crucial role in numerous critical visual tasks. However, there remains room for improvement in both descriptors and keypoints, particularly regarding the discriminative power of descriptors and the localization precision of keypoints. To address these challenges, this study introduces a novel local feature extraction pipeline named OSDFeat (Object and Spatial Discrimination Feature). OSDFeat employs a decoupling strategy, training descriptor and detection networks independently. Inspired by semantic correspondence, we propose an Object and Spatial Discrimination ResUNet (OSD-ResUNet). OSD-ResUNet captures features from the feature map that differentiate object appearance and spatial context, thus enhancing descriptor performance. To further improve the discriminative capability of descriptors, we propose a Discrimination Information Retained Normalization module (DIRN). DIRN complementarily integrates spatial-wise normalization and channel-wise normalization, yielding descriptors that are more distinguishable and informative. In the detection network, we propose a Cross Saliency Pooling module (CSP). CSP employs a cross-shaped kernel to aggregate long-range context in both vertical and horizontal dimensions. By enhancing the saliency of keypoints, CSP enables the detection network to effectively utilize descriptor information and achieve more precise localization of keypoints. Compared to the previous best local feature extraction methods, OSDFeat achieves Mean Matching Accuracy of 79.4% in local feature matching task, improving by 1.9% and achieving state-of-the-art results. Additionally, OSDFeat achieves competitive results in Visual Localization and 3D Reconstruction. The results of this study indicate that object and spatial discrimination can improve the accuracy and robustness of local feature, even in challenging environments. The code is available at https://github.com/pandaandyy/OSDFeat.

摘要

局部特征提取在许多关键视觉任务中起着至关重要的作用。然而,描述符和关键点在判别能力和关键点定位精度方面仍有改进的空间。为了解决这些挑战,本研究引入了一种名为 OSDFeat(对象和空间判别特征)的新的局部特征提取流水线。OSDFeat 采用解耦策略,独立训练描述符和检测网络。受语义对应关系的启发,我们提出了一种对象和空间判别 ResUNet(OSD-ResUNet)。OSD-ResUNet 从特征图中捕获区分对象外观和空间上下文的特征,从而提高描述符的性能。为了进一步提高描述符的判别能力,我们提出了一种判别信息保持归一化模块(DIRN)。DIRN 互补地集成了空间归一化和通道归一化,生成更具区分性和信息量的描述符。在检测网络中,我们提出了一种交叉显着性池化模块(CSP)。CSP 采用十字形核在垂直和水平两个维度上聚合远距离上下文。通过增强关键点的显着性,CSP 使检测网络能够有效地利用描述符信息,并实现更精确的关键点定位。与之前最好的局部特征提取方法相比,OSDFeat 在局部特征匹配任务中实现了 79.4%的平均匹配精度,提高了 1.9%,达到了最先进的水平。此外,OSDFeat 在视觉定位和 3D 重建方面也取得了有竞争力的结果。本研究的结果表明,对象和空间判别可以提高局部特征的准确性和鲁棒性,即使在具有挑战性的环境中也是如此。代码可在 https://github.com/pandaandyy/OSDFeat 上获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验