Suppr超能文献

通过功能混合模型使用无监督学习来表征日常身体活动模式。

Characterizing daily physical activity patterns with unsupervised learning via functional mixture models.

作者信息

Ensari Ipek, Caceres Billy A, Jackman Kasey B, Goldsmith Jeff, Suero-Tejeda Niurka M, Odlum Michelle L, Bakken Suzanne

机构信息

Windreich Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, Hasso Plattner Institute for Digital Health at Mount Sinai, One Gustave L. Levy Place, Annenberg 11-02A, New York, 10029, USA.

Columbia University Data Science Institute, New York, NY, 10025, USA.

出版信息

J Behav Med. 2025 Feb;48(1):149-161. doi: 10.1007/s10865-024-00519-w. Epub 2024 Sep 21.

Abstract

Physical inactivity is a significant public health concern. Consideration of inter-individual variations in physical activity (PA) trends can provide additional information about the groups under study to aid intervention design. This study aims to identify latent profiles ("phenotypes") based on daily PA trends among adults living in. This was a secondary analysis of 724 person-level days of accelerometry data from 133 urban-dwelling adults (89% Latinx, age = 19-77 years). We used Actigraph accelerometers and the Actilife software to collect and process 24-hour PA data. We implemented a probabilistic clustering technique based on functional mixture models. Multiple days of data per person were averaged for entry into the models. We evaluated step counts, moderate-intensity PA (MOD), total activity and sedentary minutes as potential model variables. Bayesian Information Criterion (BIC) index was used to select the model that provided the best fit for the data. A 4-cluster resolution provided the best fit for the data (i.e., BIC=-3257, improvements of Δ = 13 and Δ = 7 from 3- and 5-cluster models, respectively). MOD provided the greatest between-cluster discrimination. Phenotype 1 (N = 61) was characterized by a morning peak in PA that declined until bedtime. Later bedtimes and the highest daily PA volume were distinct for phenotype 2 (N = 18), along with a similar peak pattern. Phenotype 3 (N = 29) membership was associated with the lowest PA levels throughout the day. Phenotype 4 was characterized by a more evenly distributed PA during the day, and later waking/bedtimes. Our findings point to distinct, interpretable PA phenotypes based on temporal patterns. Functional clustering of PA data could provide additional actionable points for tailoring behavioral interventions.

摘要

身体活动不足是一个重大的公共卫生问题。考虑身体活动(PA)趋势的个体间差异可为所研究的群体提供更多信息,以辅助干预措施的设计。本研究旨在根据居住在[具体地点未给出]的成年人的每日PA趋势识别潜在类别(“表型”)。这是对133名城市居民成年人(89%为拉丁裔,年龄19 - 77岁)的724个人层面日的加速度计数据进行的二次分析。我们使用Actigraph加速度计和Actilife软件收集并处理24小时PA数据。我们基于功能混合模型实施了一种概率聚类技术。将每人多天的数据进行平均后输入模型。我们评估步数、中等强度PA(MOD)、总活动量和久坐分钟数作为潜在的模型变量。使用贝叶斯信息准则(BIC)指数来选择最适合数据的模型。四类别分辨率最适合数据(即BIC = -3257,分别比三类别和五类别模型的Δ = 13和Δ = 7有所改进)。MOD在类别间的区分度最大。表型1(N = 61)的特征是PA在早晨达到峰值,随后直至就寝时间逐渐下降。表型2(N = 18)的就寝时间较晚且每日PA量最高,同时具有类似的峰值模式。表型3(N = = 29)的成员在一整天内的PA水平最低。表型4的特征是白天PA分布更为均匀,且起床/就寝时间较晚。我们的研究结果指出了基于时间模式的不同且可解释的PA表型。PA数据的功能聚类可为定制行为干预提供更多可操作的要点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验