Suppr超能文献

基于血红蛋白 A1c 和循环肿瘤细胞预测接受免疫治疗的晚期胃癌患者生存的列线图。

A nomogram for predicting survival based on hemoglobin A1c and circulating tumor cells in advanced gastric cancer patients receiving immunotherapy.

机构信息

Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.

Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.

出版信息

Int Immunopharmacol. 2024 Dec 5;142(Pt B):113239. doi: 10.1016/j.intimp.2024.113239. Epub 2024 Sep 21.

Abstract

BACKGROUND

Our study aimed to investigate the correlation between hemoglobin A1c (HbA1c), circulating tumor cells (CTCs) and prognosis in advanced gastric cancer (GC) patients who received immunotherapy and explore the potential prognostic predictors to develop a nomogram.

METHODS

We retrospectively enrolled 259 patients with advanced GC treated at Beijing Friendship Hospital between September 2014 and March 2024. Patients were divided into the immunochemotherapy cohort (ICT) and the chemotherapy (CT) cohort. Survival rate was calculated by Kaplan-Meier survival curve, and the differences were evaluated by log-rank test. The univariate and multivariate Cox proportional hazards regression model was used to identify factors independently associated with survival. A nomogram was developed to estimate 6-, 12-, and 18-month progression-free survival (PFS) probability based on the ICT cohort.

RESULTS

Patients achieved higher PFS in the ICT cohort than the CT cohort. We focused on the ICT cohort and constructed a nomogram based on the multivariate analysis, including five variables: age, PD-L1 expression, HbA1c, CTCs and CEA*. The concordance index value was 0.82 in the training cohort and 0.75 in the validation cohort. Furthermore, we proved the nomogram was clinically useful and performed better than PD-L1 expression staging system. Notably, we found high HbA1c level but not diabetes mellitus significantly affected the efficacy of ICT.

CONCLUSION

ICT showed better PFS than CT. In addition, HbA1c and CTCs were novel biomarkers to predict PFS in patients treated with ICT. The nomogram could predict PFS of advanced GC patients receiving ICT with increased accuracy and favorable clinical utility.

摘要

背景

本研究旨在探讨接受免疫治疗的晚期胃癌(GC)患者的血红蛋白 A1c(HbA1c)、循环肿瘤细胞(CTC)与预后的相关性,并探索潜在的预后预测因子,以建立列线图。

方法

我们回顾性纳入 2014 年 9 月至 2024 年 3 月在北京友谊医院接受治疗的 259 例晚期 GC 患者。患者分为免疫化疗组(ICT)和化疗组(CT)。通过 Kaplan-Meier 生存曲线计算生存率,对数秩检验评估差异。采用单因素和多因素 Cox 比例风险回归模型确定与生存相关的独立因素。根据 ICT 队列建立一个列线图来估计 6、12 和 18 个月无进展生存(PFS)概率。

结果

ICT 组患者的 PFS 高于 CT 组。我们专注于 ICT 队列,并基于多因素分析构建了一个列线图,其中包括五个变量:年龄、PD-L1 表达、HbA1c、CTC 和 CEA*。在训练队列中的一致性指数值为 0.82,在验证队列中的一致性指数值为 0.75。此外,我们证明该列线图具有临床实用性,并且比 PD-L1 表达分期系统表现更好。值得注意的是,我们发现高 HbA1c 水平而非糖尿病显著影响 ICT 的疗效。

结论

ICT 组的 PFS 优于 CT 组。此外,HbA1c 和 CTCs 是预测接受 ICT 治疗的患者 PFS 的新的生物标志物。该列线图可以提高准确性和良好的临床实用性,预测接受 ICT 的晚期 GC 患者的 PFS。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验