Suppr超能文献

基于前列腺癌放疗患者 CT 和 MRI 影像组学特征的膀胱毒性比较预测模型。

Comparison prediction models of bladder toxicity based on radiomic features of CT and MRI in patients with prostate cancer undergoing radiotherapy.

机构信息

Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.

Department of Radiology Technology, Faculty of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran; Department of Radiology, University of British Columbia, Vancouver, BC, Canada; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada.

出版信息

J Med Imaging Radiat Sci. 2024 Dec;55(4):101765. doi: 10.1016/j.jmir.2024.101765. Epub 2024 Sep 23.

Abstract

PURPOSE

This study aimed to assess the radiomic features of computed tomography (CT) and magnetic resonance imaging (MRI) of the bladder wall before radiotherapy using machine learning (ML) methods to predict bladder radiotoxicity in patients with prostate cancer.

METHODS

This study enrolled 70 patients with pathologically confirmed prostate cancer who were candidates for radiation therapy (RT). CT and MRI of the bladder wall before radiotherapy were used to extract radiomic features. The least absolute shrinkage and selection operator (LASSO) was used for feature selection. Algorithms such as Random Forest (RF), Decision Tree (DT), Logistic Regression (LR), and K-Nearest Neighbors (KNN) have been used to develop models based on radiomic, dosimetry, and clinical parameters. The area under the curve (AUC) of the receiver operating characteristic (ROC) curve and accuracy were used to analyze the predictive power of all models.

RESULTS

The RF and LR models based on the radiomic features of MRI and clinical/dosimetry parameters with an AUC of 0.95 and 0.93, and an accuracy of 86% and 86%, respectively, had the highest performance in the prediction of bladder radiation toxicity.

CONCLUSIONS

This study showed that, firstly, CT and MRI radiomic features of the bladder wall before treatment could be used to predict bladder radiotoxicity. Second, MRI is better than CT in predicting bladder toxicity caused by radiation. And thirdly, the performance of the predictive models based on the combination of radiomic, clinical, and dosimetry characteristics was improved.

摘要

目的

本研究旨在使用机器学习(ML)方法评估前列腺癌患者放疗前膀胱壁的计算机断层扫描(CT)和磁共振成像(MRI)的放射组学特征,以预测膀胱放射性毒性。

方法

本研究纳入了 70 例经病理证实患有前列腺癌且适合放疗(RT)的患者。在放疗前,使用 CT 和 MRI 对膀胱壁进行了放射组学特征提取。采用最小绝对值收缩和选择算子(LASSO)进行特征选择。使用随机森林(RF)、决策树(DT)、逻辑回归(LR)和 K-最近邻(KNN)等算法,基于放射组学、剂量学和临床参数开发模型。使用受试者工作特征(ROC)曲线下的面积(AUC)和准确性来分析所有模型的预测能力。

结果

基于 MRI 放射组学特征和临床/剂量学参数的 RF 和 LR 模型的 AUC 分别为 0.95 和 0.93,准确性分别为 86%和 86%,在预测膀胱放射性毒性方面表现最佳。

结论

本研究表明,首先,治疗前膀胱壁的 CT 和 MRI 放射组学特征可用于预测膀胱放射性毒性。其次,MRI 比 CT 更能预测放射性膀胱毒性。第三,基于放射组学、临床和剂量学特征组合的预测模型的性能得到了提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验