Suppr超能文献

基于机器学习的放射组学模型预测局部进展期胃癌网膜转移能力的比较评估。

Comparative assessment of the capability of machine learning-based radiomic models for predicting omental metastasis in locally advanced gastric cancer.

机构信息

Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.

Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China.

出版信息

Sci Rep. 2024 Jul 13;14(1):16208. doi: 10.1038/s41598-024-66979-x.

Abstract

The study aims to investigate the predictive capability of machine learning algorithms for omental metastasis in locally advanced gastric cancer (LAGC) and to compare the performance metrics of various machine learning predictive models. A retrospective collection of 478 pathologically confirmed LAGC patients was undertaken, encompassing both clinical features and arterial phase computed tomography images. Radiomic features were extracted using 3D Slicer software. Clinical and radiomic features were further filtered through lasso regression. Selected clinical and radiomic features were used to construct omental metastasis predictive models using support vector machine (SVM), decision tree (DT), random forest (RF), K-nearest neighbors (KNN), and logistic regression (LR). The models' performance metrics included accuracy, area under the curve (AUC) of the receiver operating characteristic curve, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). In the training cohort, the RF predictive model surpassed LR, SVM, DT, and KNN in terms of accuracy, AUC, sensitivity, specificity, PPV, and NPV. Compared to the other four predictive models, the RF model significantly improved PPV. In the test cohort, all five machine learning predictive models exhibited lower PPVs. The DT model demonstrated the most significant variation in performance metrics relative to the other models, with a sensitivity of 0.231 and specificity of 0.990. The LR-based predictive model had the lowest PPV at 0.210, compared to the other four models. In the external validation cohort, the performance metrics of the predictive models were generally consistent with those in the test cohort. The LR-based model for predicting omental metastasis exhibited a lower PPV. Among the machine learning algorithms, the RF predictive model demonstrated higher accuracy and improved PPV relative to LR, SVM, KNN, and DT models.

摘要

本研究旨在探讨机器学习算法对局部晚期胃癌(LAGC)腹膜转移的预测能力,并比较各种机器学习预测模型的性能指标。回顾性收集了 478 例经病理证实的 LAGC 患者,包括临床特征和动脉期 CT 图像。使用 3D Slicer 软件提取放射组学特征。通过lasso 回归进一步筛选临床和放射组学特征。使用支持向量机(SVM)、决策树(DT)、随机森林(RF)、K 最近邻(KNN)和逻辑回归(LR)构建腹膜转移预测模型,使用选定的临床和放射组学特征。模型的性能指标包括准确性、受试者工作特征曲线下面积(AUC)、敏感度、特异度、阳性预测值(PPV)和阴性预测值(NPV)。在训练队列中,RF 预测模型在准确性、AUC、敏感度、特异度、PPV 和 NPV 方面均优于 LR、SVM、DT 和 KNN。与其他四个预测模型相比,RF 模型显著提高了 PPV。在测试队列中,所有五个机器学习预测模型的 PPV 均较低。与其他模型相比,DT 模型的性能指标变化最大,敏感度为 0.231,特异度为 0.990。LR 预测模型的 PPV 最低,为 0.210,低于其他四个模型。在外部验证队列中,预测模型的性能指标与测试队列基本一致。基于 LR 的预测模型预测腹膜转移的 PPV 较低。在机器学习算法中,RF 预测模型的准确性较高,PPV 优于 LR、SVM、KNN 和 DT 模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02b7/11246510/33809e416c6b/41598_2024_66979_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验