Suppr超能文献

免疫组织化学注释增强了人工智能对炎症性肠病数字化 H&E 幻灯片中淋巴细胞和中性粒细胞的识别。

Immunohistochemistry annotations enhance AI identification of lymphocytes and neutrophils in digitized H&E slides from inflammatory bowel disease.

机构信息

F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.

Biobank and Research Pathology Resource, Cedars-Sinai Medical Center, Los Angeles, CA, USA.

出版信息

Comput Methods Programs Biomed. 2024 Dec;257:108423. doi: 10.1016/j.cmpb.2024.108423. Epub 2024 Sep 13.

Abstract

BACKGROUND AND OBJECTIVE

Histologic assessment of the immune infiltrate in H&E slides is vital in diagnosing and managing inflammatory bowel diseases, but these assessments are subjective and time-consuming even for those with expertise. The development of deep learning models to aid in these assessments has been limited by the paucity of image data with reliably annotated immune cells available for training.

METHODS

To address these challenges, we developed a pipeline that automates the neutrophil and lymphocyte labeling in ROIs from digital H&E slides. The data included ROIs extracted from 19 digitized H&E slides and the same slides restained with immunohistochemistry. Our pipeline first delineates each nucleus in H&E ROIs. Using the colorimetric features of the immunohistochemical stains (red: neutrophils, green: lymphocytes) in the immunohistochemistry ROIs, each cell was labeled as a neutrophil, a lymphocyte, or another cell. The labels were then transferred to the corresponding H&E ROIs by image registration, and the ROI registration accuracy was assessed by the median target registration error resulting in a labeled dataset. The newly formed dataset (NeuLy-IHC) comprising 519 ROIs with 235,256 labeled cells (74,339 lymphocytes, 16,326 neutrophils and 144,591 other cells) was used to train the HoVer-Net model. The performance of HoVer-Net measured by DICE coefficient (segmentation accuracy) and F1-scores (classification accuracy), was compared to those achieved by HoVer-Net and SMILE publicly available models trained on cancer-containing ROIs from the MoNuSAC dataset with manual cell labeling and pathologists' annotations.

RESULTS

The 1.0 μm median target registration error of ROIs observed was low demonstrating robust transferring of cellular labels from immunohistochemistry ROIs to H&E ROIs. In the test set comprising 76 NeuLy-IHC and 78 MoNuSAC ROIs, the HoVer-Net achieved a DICE coefficient of 0.861 and F1-sores of 0.827, 0.838, and 0.828, for neutrophils, lymphocytes, and other cells, respectively, outperforming the HoVer-Net's and SMILE's DICE coefficient and F1 scores for each cell category.

CONCLUSIONS

We attribute the improved performance of HoVer-Net to the larger number of immune cells in the NeuLy-IHC dataset (in total 5x more, including 21x more neutrophils) than in the MoNuSAC dataset. Despite being trained on data from inflammatory bowel disease specimens, our model maintained robust performance when tested on previously unseen data derived from cancer specimens. The NeuLy-IHC set provides opportunities for training accurate models to quantify the inflammatory infiltrate in digital histologic slides.

摘要

背景与目的

在 H&E 切片中对免疫浸润物进行组织学评估对于诊断和治疗炎症性肠病至关重要,但这些评估即使对于有专业知识的人来说也是主观和耗时的。开发深度学习模型来辅助这些评估受到可用的训练有免疫细胞的图像数据不足的限制。

方法

为了解决这些挑战,我们开发了一个自动在数字 H&E 切片的 ROI 中标记中性粒细胞和淋巴细胞的流水线。该数据包括从 19 张数字化 H&E 切片中提取的 ROI 以及用免疫组织化学重新染色的相同切片。我们的流水线首先在 H&E ROI 中描绘每个细胞核。使用免疫组织化学 ROI 中免疫组织化学染色的比色特征(红色:中性粒细胞,绿色:淋巴细胞),将每个细胞标记为中性粒细胞、淋巴细胞或其他细胞。然后通过图像配准将标签转移到相应的 H&E ROI 中,并通过导致标记数据集的中位数目标配准误差来评估 ROI 配准的准确性。新形成的数据集(NeuLy-IHC)由 519 个 ROI 组成,包含 235256 个标记细胞(74339 个淋巴细胞、16326 个中性粒细胞和 144591 个其他细胞),用于训练 HoVer-Net 模型。HoVer-Net 的性能通过 DICE 系数(分割准确性)和 F1 分数(分类准确性)进行衡量,并与 HoVer-Net 和 SMILE 进行比较,它们是基于 MoNuSAC 数据集的癌症相关 ROI 中手动标记的细胞和病理学家注释进行训练的,并包含公共模型。

结果

观察到的 ROI 的 1.0μm 中位数目标配准误差较低,表明从免疫组织化学 ROI 到 H&E ROI 的细胞标签的稳健转移。在包含 76 个 NeuLy-IHC 和 78 个 MoNuSAC ROI 的测试集中,HoVer-Net 分别针对中性粒细胞、淋巴细胞和其他细胞,实现了 0.861 的 DICE 系数和 0.827、0.838 和 0.828 的 F1 分数,优于 HoVer-Net 和 SMILE 的每个细胞类别的 DICE 系数和 F1 分数。

结论

我们将 HoVer-Net 性能的提高归因于 NeuLy-IHC 数据集中的免疫细胞数量(总共多 5 倍,包括中性粒细胞多 21 倍)多于 MoNuSAC 数据集。尽管是在炎症性肠病标本的数据上进行训练的,但我们的模型在测试来自癌症标本的以前未见的数据时仍保持稳健的性能。NeuLy-IHC 集为在数字组织学幻灯片中量化炎症浸润物提供了训练准确模型的机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验